Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Swanson D.G., Hoefer W.J.R. — Microwave Circuit Modeling Using Electromagnetic Field Simulation
Swanson D.G., Hoefer W.J.R. — Microwave Circuit Modeling Using Electromagnetic Field Simulation



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Microwave Circuit Modeling Using Electromagnetic Field Simulation

Àâòîðû: Swanson D.G., Hoefer W.J.R.

Àííîòàöèÿ:

This unique 'how to' book is an ideal introduction to electromagnetic field-solvers. It provides you with helpful advice on selecting the right tools for your RF and high-speed digital circuit design work. The focus is on the strengths and weaknesses of the major commercial software packages. Featuring full-color illustrations, this practical resource offers you invaluable tips and techniques on the use and evaluation of these products. A generous amount of case study material is presented, including a 'what went wrong in the design process' discussion, when applicable. Color plots of current density and various field quantities included throughout the book help you better understand the fundamental behavior of the circuits being studied. Stress is given to the impact of meshing, geometrical resolution and convergence on the solution process, showing you that you can better control and greatly influence the quality and speed of the solution. You'll appreciate solving problems using the fundamental, underlying physics, rather than the more approximate methods used in the past. Specific design information on transitions in multilayer PCBs and PCB connectors is not available in any other book.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/×èñëåííûå ìåòîäû/Ìîäåëèðîâàíèå ôèçè÷åñêèõ ïðîöåññîâ/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2003

Êîëè÷åñòâî ñòðàíèö: 469

Äîáàâëåíà â êàòàëîã: 20.02.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
2.14-GHz      425—431
3.5-GHz      414—425
Absorbing boundary condition (ABC)      156 160 163
ACIS tool box      436
Adaptive Lanczos — Pade sweep (ALPS)      86
Adaptive meshing      39 139 143
Agilent EEsof      100
Agilent HFSS      130 139 269 305 450
Agilent Momentum      113 447
Air dielectric      96—98 186 202 237—238 385 396
Alignment, meshing      113
Alternating rotated transmission line matrix      71
Alternating transmission line matrix      71
Analytical methods      33
Ansoft Ensemble      92 446
Ansoft HFSS      10 23 132 133 139 151 264 373 449
Ansoft Serenade      387
Antipad      284 307 328 330
Arbitrary solver      84—85 449—452
Asymptotic waveform evaluation (AWE)      86
Automatic network analyzer (ANA)      176—177
Back-to-back transition      306—309
Backward wave coupler      339
Backward wave coupler, coplanar waveguide      339—347
Backward wave coupler, Lange      357—363
Backward wave coupler, metal thickness      347—357
Backward wave coupler, PCS band 15-db      363—369
Backward wave coupler, PCS coax-to-coax      369—375
Balanced amplifier      358
Balanced attenuator      358
Ball grid array (BGA)      27 280
Balun      16 113
Bandpass filters, 1.5 to 5.5-GHz      399—401
Bandpass filters, 22.5-GHz      387—394
Bandpass filters, 3.7-GHz      394—399
Bandstop filter      401—405
Basis functions (expansion functions)      34 37—39 41—42 73
Basis vectors      41
Berenger’s perfectly matched layer      66
Black box step model      178 180
Bondwire      186 309—310
boundary conditions      66 72—73
Boundary element method      36
Boundary meshing      35 47
Boundary surfaces      51
Box modes      49
Branch line coupler      193—196 233—234
Buried transmission line      252—253 283
Calibration, finite element method      145—150
Calibration, method of moments      116—122 181—182
Calibration, method of moments, numerical methods      202—203
Capacitive discontinuity      137—138
Capped port      317
Cartesian mesh      40 61—64 67—73
Cascaded discontinuity model      215
Cascaded mitered bend      230—232
Cascaded passive component      285
Cells, method of moments      95 99
Center pin      318—319 323 336
Central differencing      55 56 62—63
Ceramic substrate      205 212 282
Chip and wire filter      394
Chip capacitor      105
Circuit-theory-based computer-aided, design (CAD)      10—13 16—18 415—419
CLD software      423
Closed box code      16
Closed box moment method      89—92 291—299 341 358 359 384 395
Closed box moment method port      180—183
Closed-form electromagnetic analysis      33
Coax-to-coax transition coupler      368—375
Coaxial calibration structures      145—150
Coaxial lowpass filter      407—414
Coaxial open      148—419
Coaxial resonator      132—137
Coaxial short      147—148
Coaxial standard, meshing      130—132
Coaxial standard, validation      202
Coaxial step discontinuity      137—143 166—170
Coaxial termination      149—150
Coaxial through line      145—147
Collocation      38n 43—44 47
Color plot      3—4
Combline filter      377 407
Compaction, microstrip circuit      229—234
Completely open circuit topology      49
Computational electromagnetics      29—30
Computer-aided design (CAD)      1 9—10 29
Computer-aided design (CAD), circuit-theory-based      10—13 16—18 415—419
Computer-aided design (CAD), field-theory-based      13—18
Computer-aided engineering (CAE)      29
Concerto software      452
Controlled impedance transition      290—296 315
Convergence, finite difference method      153
Convergence, finite element method      131 142
Convergence, method of moments      98—102 116
Convergence, numerical methods      200—202
Convergence, transmission line      153
Convergence, transverse electric mode      158—160
Convolution techniques      73
Coplanar waveguide (CPW)      101 250—253 283 339
Coplanar waveguide (CPW) with dielectric overlay      250—252
Coplanar waveguide (CPW), coupler      339—347
Coplanar waveguide (CPW), port      180—181 185—187 192 203
Coplanar waveguide with ground (CPWG)      192 310 339
Coulomb’s law      40
Coupled integral solution      36
Coupled microstrip      15 263—267
Coupled microstrip, de-embedding      185—186
Coupled slot      15
Coupled transmission line symmetry      246—250
Coupled-slab model      415—417 424
Coupler directivity      353 367
Courant stability limit      65—66
Cross-section solver      81—83
CST Microwave Studio      139 164 450
Data pipe program      23—24
De-embedding      116 173 434 435
De-embedding, closed box ports      180—183
De-embedding, finite difference ports      187—189
De-embedding, finite element ports      184—187
De-embedding, laterally open ports      183—184
De-embedding, numerical methods      203—204
De-embedding, transmission line ports      187—189
De-embedding, unterminating      176—180
Degrees of freedom      30 39
Desired stripline mode      301 303 305
Device under test (DUT)      176 183
Dielectric overlay      250—252
Dielectric resonator filter      377 407
Differential solution, Maxwell’s equations      40
Digital edge-launch connector      321—326
Diplexer      424 424—425
Dirac delta functions      38n 47
Dirac testing functions      43—44
Directional coupler      364
Dirichlet electric wall      66
Discontinuities      205—206
Discrete Fourier transform (DFT)      74—75 86 153 154
Discretization      51—55 61—67 86 125 127
Distributed filter      16
Distributed lowpass filter      12—13
Distributed microwave circuit      30
Domain method      35
Dot product      41
Drill point transition      374—375
Dumbell topology      105 394
Dummy region      132—143 166—168 410
ECM software      385
Edge-coupling filter      178—180 339—340 384—387
Edge-launch connector      315—321
Edge-launch connector, digital      321—326
Edge-launch connector, radio frequency      315—321
Edge-meshing      99—91 108—110 113 349 355—357 359—360
Eigen-solvers      87—88
ElecNet software      442
Electric field integral equation (EFIE)      44—49
Electric walls      73 195
ELECTRO Integrated Engineering Software      442
Electromagnetic (em) field-solver      1—3 29—30
Electromagnetic analysis      30 32—34
Electromagnetic compatibility (EMC)      3
Electromagnetic interference (EMI)      3
Electromagnetic simulation      73—75
Electromagnetic synthesis      30 32
Electron discharge (EC)      415
Electrostatic solver      441—442
Empipe software      395 401
Empipe3D software      373
EMSight software      213—214 447
EMSimcode      10
Enclosures      14 49
Epoxy-glass-based substrate      212 282
Equivalent circuit model      206
Euler — Lagrange differential equation      54
Evanescent modes      177—178 222—224 383 385
Even mode      194—196 246—247 340 347 364 387 389—390
Excitation function      see “Source function”
Expanded node transmission line matrix mesh      70—71
Expansion functions (basis functions)      34 37—39 41—42 73
Fast Fourier transform (FFT)      86 153 154 418 420
Fast sweep option      86
FEMLAB software      440
Field domain      51
Field update equation      63
Field-effect transistor (FET)      25—26 207 253—254
Field-theory-based computer aided design (CAD)      13—18
Filtering      2 17 377—381 403
Finite difference time domain (FDTD)      6 16 17 36 38
Finite difference time domain (FDTD), formulation      55—58
Finite difference time domain (FDTD), meshing      163—170
Finite difference time domain (FDTD), ports      187—189 204
Finite difference time domain (FDTD), solution strategies      59—67
Finite difference time domain (FDTD), strengths/weaknesses      153—156
Finite difference time domain (FDTD), validation structures      156—163
Finite difference time domain (FDTD), visualization      170
Finite element method (FEM)      2—3 10 15 16 36 86 155 242
Finite element method (FEM), formulation      50—55
Finite element method (FEM), meshing      128—145
Finite element method (FEM), ports      184—187 204
Finite element method (FEM), printed circuit board      301—305
Finite element method (FEM), strengths      125—127
Finite element method (FEM), versus method of moments      125
Finite element method (FEM), via isolation fences      267—268
Finite element method (FEM), weaknesses      127—128
Finite integral technique (FIT)      10 36 55 58—61
Flat bottom transition      374—375
FlexPDE software      139 143 242 244 248 253 440
Fourier transform      17 34—35 49 50 74—75 86 155 160
FR4 transition      283—290
FR4 transition, switch matrix      305—311
Frame relay 4 (FR4)      255—258 283—290 323 328
Frequency domain numerical methods      35—37 55 74
Frequency domain solver      86
Frequency-dispersive boundary      66 73
Fringing field      112 177
Full-domain expansion functions      73
Full-wave solver      383
Fully enclosed circuit topology      49
Function space      41—42
Functionals      54
Galerkin’s method      43 47
Gallium arsenide substrate      225—230 253—254 311
Gap capacitor      111
Gap port      189—193 204
Gauss — Seidel iterative process      60
General multipole      36
General projective approximation      48
Geometrical resolution      144 201—202
Geometrical, coaxial standard meshing      130—132
Geometry, classification by      81—85
Gerber plots      330
Graded meshing      39 163—164
Graphical user interface (GUI)      240
Green’s function      40 41 45—46 48—50 89 90—92
Grounding pad      271—282 307
Groups of discontinuities      21—22
Guide wavelength      10 14 144 201
Haar expansion functions/wavelets      39
Hardwired network      70
High frequency (HF)      12
Hilbert space      38n 48
Hybrid method, circuit analysis      18—23 36
Hybrid node      71 72
Ideal short circuit      116—118
IDM program      379
IE3D software      92 105 300 349—355 358 448
Image rejection filter      377
Impedance      185
Impedance multiplier      196
Impedance, controlled transition      290—296 315
Impedance, single strip      237—246
Impulse reflection coefficient      73
Infinite element      55
Inhomogeneous materials and losses      72
Initial conditions      66 72—73
Inner product      41
Integral solution      40—42
Integrated two-dimensional field-solver      443—445
Interdigital filter      378—384 407
Interleaving      339—340
Intermediate frequency (IF) filter      377
Internal port      189—193 204 434
Invert time      435
Irregular meshing      39
Lambda-based meshing      140 142—143
Lange coupler      16 26 339—340 357—363
Laplace equation      56 57 60 61 239
Laterally open code      16 20 49
Laterally open moment method      90—92 299—301 341 349 358 384
Laterally open moment method port      183—184
Layout-based tool      24—25
Line Calc software      246
Linear expansion functions      38 51—53
LINMIC+/N software      382 387 443 445
LINPAR software      361 441
Local integral approximation      164—165
Local multipoint distribution service (LMDS)      285
Local oscillator (LO) filter      377
Loss stub      72
Loss, microstrip      224—229
Low temperature co-fired ceramic (LTCC)      24—25 27
Lowpass filter      10—13 407—414
Lowpass/highpass diplexer      24—25
Lumped element network      31 394
Lumped element via      260—262
Lumped lowpass filter      10—11 13
Lumped port      189—193 204
MAFIA software      10
Magnetic field integral equation (MFIE)      44
Magnetic wall      73 146 193—195 244
Matched load      160
Matrix fill time      435
Matrix inversion      16—18 48—49 59—61 86 436
Maxwell 2D software      441
Maxwell SI 2D software      365—369
Maxwell’s equations      1 9 10 29 32 34 62—65 69 150 153 174
MCPL Model software      444
MDS software      444
Meander line      232—233
Mefisto-3D Pro software      165 451
1 2 3
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå