Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Swanson D.G., Hoefer W.J.R. — Microwave Circuit Modeling Using Electromagnetic Field Simulation
Swanson D.G., Hoefer W.J.R. — Microwave Circuit Modeling Using Electromagnetic Field Simulation



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Microwave Circuit Modeling Using Electromagnetic Field Simulation

Àâòîðû: Swanson D.G., Hoefer W.J.R.

Àííîòàöèÿ:

This unique 'how to' book is an ideal introduction to electromagnetic field-solvers. It provides you with helpful advice on selecting the right tools for your RF and high-speed digital circuit design work. The focus is on the strengths and weaknesses of the major commercial software packages. Featuring full-color illustrations, this practical resource offers you invaluable tips and techniques on the use and evaluation of these products. A generous amount of case study material is presented, including a 'what went wrong in the design process' discussion, when applicable. Color plots of current density and various field quantities included throughout the book help you better understand the fundamental behavior of the circuits being studied. Stress is given to the impact of meshing, geometrical resolution and convergence on the solution process, showing you that you can better control and greatly influence the quality and speed of the solution. You'll appreciate solving problems using the fundamental, underlying physics, rather than the more approximate methods used in the past. Specific design information on transitions in multilayer PCBs and PCB connectors is not available in any other book.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/×èñëåííûå ìåòîäû/Ìîäåëèðîâàíèå ôèçè÷åñêèõ ïðîöåññîâ/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2003

Êîëè÷åñòâî ñòðàíèö: 469

Äîáàâëåíà â êàòàëîã: 20.02.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Meshing, filters      420—421
Meshing, finite difference      163—170
Meshing, finite element      128—145 407—408 411 412
Meshing, method of moments      98—114
Meshing, numerical methods      199—200
Meshing, spiral inductor      394—399
Meshing, surface      47 113—114 200
Meshing, transmission line      163—170
Meshing, volume      23 200
Metal thickness      347—357 359—360
Metal-insulator-metal (MIM) capacitor      107 111—113
Method of lines      36
Method of moments (MoM)      10 14—17 20—21 36 38n 41 43—50 86
Method of moments (MoM) ports, closed box      180—183
Method of moments (MoM) ports, laterally open      183—184
Method of moments (MoM) ports, numerical methods      203
Method of moments, calibration structures      116—122
Method of moments, cells and subsections      95—96
Method of moments, closed box      89—92 180—183 291—299 341 358 359 384 395
Method of moments, displaying voltage      114—116
Method of moments, exceptions      92—93
Method of moments, laterally open      90—92 183—184 299—301 341 349 358 384
Method of moments, meshing and convergence      98—114
Method of moments, printed circuit board      288
Method of moments, validation structures      96—98
Method of moments, versus finite element method      125
Method of moments, via isolation fences      263—268
Method of weighted residuals      41
Micro-Stripes software      209 418 421 451
Microprocessor      9
Microstrip      205—206 217—219
Microstrip, 50-ohm line      93—95
Microstrip, branchline coupler      233—234
Microstrip, circuit compaction      229—234
Microstrip, convergence      100—102
Microstrip, discontinuities      205—206 219—220
Microstrip, evanescent modes      222—224
Microstrip, filters      377—378
Microstrip, impedance      96 101—102
Microstrip, loss      224—229
Microstrip, mitered bend      215—217
Microstrip, quasi-TEM      205 220—222
Microstrip, tee-junction      103—105 205 379—381
Microstrip, thin-film resistor      118—121
Microstrip, vias and slots      207—215
Microstrip-to-microstrip transition      307
Microwave analysis and design      30—32
Microwave computer-aided design (CAD)      24—26
Microwave Office software      213—214
Mitered bend      19—21 205 215—217 230—232
Mixed potential integral solution (MPIE)      92
MLEF software      214
MLIN software      215
MLnCTL software      445
MLSIM software      446
MMIC software      10 271—281 305—306
MMICTL software      443
Mode-matching method      36 133
Modes-to-nodes problem      185—186 204
Monolithic integrated circuit (MIC)      107
Mother of all methods (MOM)      44
MSnCTL software      444
MSTEP model      214
MTEE model      388
Multiconductor system      249—250
Multilayer printed circuit board (PCB)      271 281
Multilayer printed circuit board (PCB), controlled impedance      281—283
Multilayer spiral inductor      113
Multilayer transformer      113
Multiresolution      39
MULTLIN software      441
Negative capacitor      418
Neumann magnetic wall      66
Nonlinear boundary      154
Nonlinear material      154
Nonrecursive convolution      73
Numerical electromagnetics      1—3 6—7 29—30
Numerical methods      33—39
Numerically controlled (NC) filter      415
Odd mode      194—196 246 248—249 340 347 364 387 389—390 392
Ohm’s Law      119
One-dimensional (ID) finite element method      51
One-dimensional (ID) numerical methods      36
Open boundary      156
Open circuit      118 160—163
Open-circuited shunt stub      72
Open-end capacitance      372—375
Optimization      23—24 32
OSA90/HOPE software      395 401
Output, simulator      66—67 73—75
Overlay capacitor      111—113
Overrelaxation      60
Pade via Lanczos (PVL) method      86
Parallel plate capacitance      112 301 303
Parasitic coupling      13 14 18
Passive components      9—10 26—27 285
PCLIN model      444
PCS band 15-db coupler      363—369
PCS band coax-to-coax transition      368—375
PCS band coplanar waveguide coupler      340—347
PDE software      239 248 439—440
Per-feet electric conductor (PEC)      83
Perfect electric conductor (PEC)      146
Perfect magnetic conductor (PMC)      242
Perfectly matched layer (PML)      156
Personal computer (PC)      1 9 10
Petrov — Galerkin method      41
phase velocity      96 101 102 185 237—244
Pi-network (PINET)      388—399
Piecewise linear expansion functions      73
Planar field-solver      83—84 445—448
Planar filter      377—378
Point matching      38 47
Poisson equation      40
Port extension      183
Port match      353 356 367
Ports      173—176
Ports, closed box      180—183
Ports, finite difference      187—189 204
Ports, finite element      184—187 204
Ports, internal, lumped, gap      189—192 204
Ports, laterally open      183—184
Ports, method of moments      180—184 203
Ports, numerical methods      203—204
Ports, symmetry      193—196
Ports, transmission line matrix      187—189 204
Ports, tuning      430
Preselector filter      377
Printed capacitor, meshing      107—111
Printed circuit board (PCB)      10 27 49 205 207 209 255 270 281
Printed spiral inductor      105—107 394—399
Problem-specific boundary conditions      37
Projective approximation      30 41—44 47 48
Prony method      155
Propagation velocity      237
Pseudo-lumped topology      387—388 394 399 414
PTFE sleeve      410 413—414
Pulse expansion function      43
Pulse expansion functions      43 49 73
Quasi-static solver      382—383
Quasi-TEM      205 220—222 240
QuickField software      240 241 251 440
QwickWave3D software      164
Radar cross-section (RCS)      3 17 86
Radio frequency (RF)      1
Radio frequency edge-launch connector      315—321
Radio frequency integrated circuit (RFIC)      113 205 207
Rayleigh — Ritz procedure      54
Rectangular resonator      156—158 202
Rectangular waveguide validation      160—163
Recursion formula      110
Recursive convolution      73
Relaxation      60—61
Resistive components      12
Resonant frequencies      156—160
Resonator standard, validation      202
Richardson extrapolation      110—111 114
Rooftop expansion functions      38 49
S/FILSYN software      394
Scalar differential equations      62—63
Scattered electric field      44 48—49
Scattering      160—162
Scattering formulation      30 67—72
Schematic computer aided design      24—26
Seeding      132—143 408 412 414
Semianalytical methods      33
Series-connected TLM mesh      70
SFPMIC software      445
Short circuit      116—118 160—163
Short-circuited series stub      72
Shunt stub      72
Shunt-connected transmission line      67—70
Sidewall      14 49
Single pole double throw (SPDT) switch      305—311
Single strip impedance      237—246
Skin depth      224
Skin effect      120 160 224—225 229
SLnCTL software      444
Slot      207—208
Smith chart      120—121 320 330
Software selection      433—438
Solution domain classification      85—88
Solution process      433—434
Solution time      16—18 48—49 59—61 86 436
Sommerfeld integral      49
Sonnet em      10 21 22 192 225 265 300 401 448
Sonnet emvu      221
Source function      40
Space variables      36
Spatial wavelength      94 144 201
SPDT software      311
Spectral domain method (SDM)      15 36 49—50
SPICE software      36
Spiral inductor      16 105—107 113 394—399
SSnCTL software      444
Stability      65—66 154
Staircase approximation      163—165
Stand-alone field-solver      439—442
Static method      35n 56
Stationary functionals      54
Step discontinuity      137—143 166—170
Stripline      253 283
Stripline length (SLIN)      310
Stripline meander line      232—233
Stripline mode      303
Stripline standard, meshing      165—166
Stripline standard, validation      202
Subgridding      164—165
Subminiature A (SMA) connector      6 315—321 326—333 412
Subminiature A (SMA) connector, surface mount      333—336
Subminiature A (SMA) connector, through hole      326—333
Subsection      95—96 99
Subsectional expansion functions      37—38 73
SUN SPARC-10 software      288 289 420
Super-Compact software      382
Supercondensed node      71—72
Support, subdomain      38
Surface (boundary) meshing      16 23 47 113—114 200
Surface impedance      226
Surface mount subminiature A (SMA) connector      333—336
Surface mount technology (SMT)      12
Switch matrix      305—311
Symmetrical condensed node      71—72
Symmetry, coupled line      246—250
Symmetry, ports      193—196
Symmetry, single-strip      244—246
System identification      155
Tapped resonator      415
Taylor series      55
Tee-junction      205—206 217—219 379—381
Tefiku’s notation      196
Teflon-based substrate      205
Tessellation algorithm      54—55
Testing functions      42—44
Thin-film circuit      205 271 377
Thin-film resistor      118—121
Three-dimensional (3D) arbitrary solver      84—85 449—452
Three-dimensional (3D) field-solver      16 364—365 368—369 383 416—417
Three-dimensional (3D) finite difference time domain port      187—189 204
Three-dimensional (3D) finite element method      51 128—130 142 192—193 384
Three-dimensional (3D) finite element method, ports      184—187
Three-dimensional (3D) finite element method, printed circuit board      301—305
Three-dimensional (3D) finite element method, via isolation fences      267—271
Three-dimensional (3D) numerical methods      36
Three-dimensional (3D) transmission line matrix      70—71 418 421
Three-dimensional (3D) vias      209—212
Three-dimensional (3D) wireframe      4—6
Thresholding      39
Through hole subminiature A (SMA) connector      326—333
Through hole vias      284
Time domain numerical methods      35—37 55
Time domain reflectometry (TDR)      86 170 326
Time domain solver      86
Time stepping code      17
Time-harmonic finite difference method      56 57 74
Time-harmonic method      35
Transformer      113
Transient methods      35
Transmission line matrix (TLM)      6 10 16—17 36 67—73
Transmission line matrix, meshing      163—170
Transmission line matrix, ports      187—189 204
Transmission line matrix, strengths/weaknesses      153—156
Transmission line matrix, validation structures      156—163
Transmission line matrix, visualization      170
Transmission line network      31
Transmission-line circuit solver      36
Transverse electric (TE)      36 156—160
Transverse electric magnetic (TEM)      36 143 150 175—176 205 240 377 416
Transverse magnetic (TM)      156—158
Truncated cell      164—165
Tubular topology      105 394
Tuning resonator      425—431
Two-and-a-half-dimensional (2.5D) field solver      16 382—383 400—401
Two-and-a-half-dimensional (2.5D), method of moments      89 91 95 184—185 193 263—267
Two-and-a-half-dimensional (2.5D), numerical methods      36
Two-and-a-half-dimensional (2.5D), planar solver      49—50 83—84
Two-dimensional (2D) cross-section solver      81—83 253—254 439—445
Two-dimensional (2D) field-solver      15—16 365—369 382—383 385 387
Two-dimensional (2D) finite element method      51 143 204
Two-dimensional (2D) method of moments      91 183—184 361
Two-dimensional (2D) numerical methods      36
Two-dimensional (2D) transmission line matrix      67—70
Undesired parallel plate/waveguide mode      305
Uniform meshing      99—101 110
Unit vector      41
UNIX system      9 10
Unknown coefficients      40—43 51—55
Unterminating      176—177
Validation structures, finite difference      156—163
Validation structures, finite element      128
Validation structures, method of moments      96—98
Validation structures, numerical methods      202
Validation structures, transmission line      156—163
Variable meshing      163—164
Vector direction      220
Very high frequency (VHF)      12
Via isolation fences, experiments      268—271
Via isolation fences, finite element method      267—268
Via isolation fences, method of moments      263—267
Via stub      284
1 2 3
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå