Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Greiner W., Neise L., Stöcker H. — Thermodynamics and statistical mechanics
Greiner W., Neise L., Stöcker H. — Thermodynamics and statistical mechanics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Thermodynamics and statistical mechanics

Авторы: Greiner W., Neise L., Stöcker H.

Аннотация:

The series of texts Classical Theoretical Physics is based on the highly successful series of courses given by Walter Greiner and his colleagues at the Johann Wolfgang Goethe University in Frankfurt am Main, Germany. Intended for advanced undergraduates and beginning graduate students, the volumes in this series will provide not only a complete survey of classical theoretical physics but also an enormous number of worked examples and problems to show students clearly how to apply the underlying principles to realistic problems.

Thermodynamics and Statistical Physics covers: Thermodynamics - basic definitions of thermodynamics, equilibrium, state variables - the first and second laws - phase transitions and chemical reactions - thermodynamic potentials Statistical Mechanics - statistics of microscopic states and connection to the entropy - the microcanonical, canonical and grand canonical ensembles - applications of Boltzmann statistics Quantum Statistics - the density operator - many-particle wave functions - ideal quantum systems - the ideal Bose gas and applications to blackbody radiation, Kirchhoff's law, and lattice vibrations - the ideal Fermi gas and applications to condensed-matter physics, astrophysics, and nuclear physics - relativistic Bose and Fermi gases and applications to particle physics Real Gases and Phase Transitions - real gases and the virial expansion - classification of phase transitions and critical indices - the Ising and Heisenberg models

FROM THE REVIEWS:

AUSTRALIAN & NEW ZEALAND PHYSICIST "As one might expect, it contains a thorough and complete coverage of a wide range of topics...It contains a wealth of worked examples: for instance, the theory of relativistic gases is illustrated by its application to one of Greiner's favorite topics, the quark-gluon plasma in the Big Bang and in heavy-ion collisions. It deserves serious consideration as a textbook for third-year courses in this area."



Язык: en

Рубрика: Физика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1995

Количество страниц: 480

Добавлена в каталог: 17.11.2013

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
$b$(beauty)      387
$b$(bottom)      387
$c$(charm)      387
$d$(down)      387
$g$-factors      218
$H$-Theorem      43
$K$-functions      235
$N$ harmonic oscillators, density of states for      191
$N$-dimensional sphere, volume of an      130
$s$(strange)      387
$SU$(3)      386
$t$(top)      387
$t$(truth)      387
$u$(up)      387
$\Gamma$-function      344
$\lambda$-transitions      420
$\zeta$-function      344
${}^{4}He$, $\lambda$-point in      324
${}^{4}He$, Phase diagram of      324
${}^{4}He$, Specific heat of      324
3K background radiation      332
Absorptivity      328
Adiabates      36
Antiferromagnetic materials      429
asymptotic freedom      387
Atomic mass      13
Avogadro’s number      13
Bag pressure      388
BCS theory      434
Bessel functions      234
big bang      3
Black holes      359
Bloch walls      425
blue      386
Boiling, delayed      70
Boltzmann      43
Boltzmann factor      164
Boltzmann statistics      208
Boltzmann’s constant      128
Boltzmann’s constant of proportionality $k$      9
Bose condensation      318
Bose gas      314
Bose gas, Ultrarelativistic      325
Bose — Einstein statistics      292
Bosons      287
Bragg — Williams approximation      454
Braun — Le Chatelier principle      119
Brillouin function      219 451
Calorie      16
Calvalieri’s theorem      126
Canonical density matrix for $N$ free particles      278
Canonical density operator      270
canonical ensemble      159 200
Canonical ensemble, harmonic oscillators in      169
Canonical ensemble, ideal gas in      166
Canonical ensembles, connection between microcanonical and      186
Canonical partition function      162 301
Canonical partition functions, weighted sum of      245
Canonical phase-space density      160
Carnot cycle      39
Carnot’s process      37
Chandrasekhar limit      361
chemical potential      13 15
Chemical reactions      62
Clausius      33
Clausius — Clapeyron equation      64 65 423
Clausius’ virial      197
Cluster      407
Cluster expansions      414
Coefficient of expansion      23
Coefficients, stoichiometric      63
Coherent      264
Color field      387
Color flux tube      387
Compressibility      23
Condensation of corresponding phonons      431
Condensation, delayed      70
confinement      387
Cooper pair      433
Coordinate representation      275
Copper, specific heat of      350
Critical indices      424
Critical point      69
Crystal structure, rearrangements of      431
Curie’s constant      217
Curie’s law      217
Cylinder functions      234
Davy      16
de Haas-van Alphen effect      371 374
Debye function      338
Debye temperature      338
Degeneration factor      187
Degrees of freedom, internal      225
Density matrix      280
Density matrix, properties of      265
Density of particles      178
Density of states $g$      258
Density of states, one-particle      315
Density operator      260
Density operators      257 269
Differentials, exact      25 29
Differentials, inexact      25 29
Dipole moment, total mean      216
Dirac brackets      268
Dirac’s notation      261
Dulong and Petit, law of      21
Dulong and Petit, rule of      337
Efficiency      40
Einstein and Debye model      334
Einstein function      336
Endergonic      102
Endothermal      100
Energy gap      433
Energy hypersurface      126
Energy, Compressional      397
Energy, internal      33 34
Engines, thermodynamic      52
Ensemble average      143 177
Ensemble theory      123 142
Enthalpy      95
entropy      37
Entropy $S$      39
Entropy $S$, number of      123
Entropy, as an ensemble average      149
Entropy, microscopic interpretation of      43
Entropy, statistical definition of      127
Equal distribution theorem      198
Equation of state for a real gas      17
Equations, adiabatic      35
Equations, of state      3
Equilibrium      3
Equilibrium state      6
Equilibrium, global      7
Equilibrium, global and local      51
Equilibrium, local thermal      7
Equipartition theorem      194 198
Ergodic hypothesis      142 144
Euler angles      226
Euler — Maclaurin formula      368
Euler’s equation      58 59
Exergonic      102
Exothermal      100
Expansion, isothermal      23
Fermi gas      341 347
Fermi gas, degenerate      347 350
Fermi gas, relativistic      355
Fermi gas, specific heat of      349
Fermi gas, ultrarelativistic      378
Fermi gases, applications of      386
Fermi — Dirac statistics      292
fermions      287
Ferrimagnets      429
Ferroelectric materials      430
Flavors      387
Fluctuations      45 191 248
Fock space      272
Free electron      264
Free energy      91
Free energy of ideal gas      94
Free enthalpy      101
Free particle      273 275
Free particle, calculation of $\bigotimes AFH$ $B$ for      277
Free particles, canonical density matrix for $N$      278
Fugacity      245
Fundamental relation      41
Gas constant      17
Gas, evaporating      174
Gas, ideal      9
Gas, ultrarelativistic      152 168
Gay — Lussac      9
Geometric distribution      310
Gibbs correction factor, general foundation of      164
Gibbs — Duhem relation      58 59 416
Gibbs — Helmholtz equation      103
Gibbs’ correction factor      133
Gibbs’ free enthalpy      248
Gibbs’ paradox      131 133
Gibbs’ phase rule      62 63 416
Gibbs’ phase rule, extended      64
Gibbs’ potential      101
Gluons      386 387
Grand canonical density operator      272
Grand canonical description      297
grand canonical ensemble      240
Grand canonical partition function      272 301
Grand canonical potential      273
Grand potential      107
Green      386
gyromagnetic ratio      218
Hadronic gas      396
Hallwachs effect      353
Hamiltonian      128
Hankel functions, first kind      234
Hankel functions, second kind      234
harmonic oscillator      280
Harmonic oscillators      156
Harmonic oscillators, $N$ quantum mechanical      209
Heat      15
Heat bath      23
Heat capacities      110
heat capacity      15
Heat capacity, total      16
Heat, evaporation      417
Heat, latent      417
Heat, molar specific      17
Heat, reduced      39
Heaviside — Lorentz      385
Heavy-ion collisions      386 396
Heisenberg model, in mean-field approximation      450
Heisenberg, model of      436
Helmholtz potential      91
Henry and Dalton, law of      77
Hilbert space      261
Homogeneous functions of first order      59
Hydrodynamics      251
Ideal gas      171 188 293 314 341
Ideal gas law      9
Ideal gas, $\rho_{i} (\vec{r})$ for      179
Ideal gas, chemical potential of      60
Ideal gas, enthalpy of      97
Ideal gas, entropy of      86
Ideal gas, equations of state of the      139
Ideal gas, Euler’s equation for      60
Ideal gas, free enthalpy of      102
Ideal gas, kinetic theory of the      10
Ideal gas, partition function of the ultrarelativistic      236
Ideal gas, relative momenta in      181
Ideal gas, relativistic      233
Ideal gas, statistical calculation of the entropy of the      129
Ideal gas, virial theorem and      199
Ideal Quantum Systems      297
Incoherent      264
Integrating factor      28
Intensive state quantities      42
inversion      224
Irial expansion      414
Isentropes      36
Ising model      436
Ising model, in mean-field approximation      443
Ising model, in one dimension      438
Ising model, order-disorder phase transitions in      453
Isochoric      35
Jacobi determinant      116
Jacobi transformations      115
Joule — Thomson coefficient      118
Joule — Thomson experiment      112
Kelvin      385
Kirchhoff’s law      328
Kirchhoff’s law, derivation of      334
Landau      417
Landau diamagnetism      366
Landau diamagnetism, state density of      374
Lande factor      218
Langevin function      216
Law of atmospheres      180
Law of mass action      70 72
Law, first      33
Lee      420
Legendre transformation      87
Lennard — Jones potential      403
Linde’s liquefaction process      115
Line integrals      25
Liouville equation      267
Liouville’s theorem      145 146
Liquid crystals      432
London F.      324
Longitudinal waves      336
Macrocanonical distribution      242
Macrocanonical ensemble      240 248
Macrocanonical ensemble, ideal gas in      246
Macrocanonical partition function      244
Macrocanonical potential $\phi$      245
Macroscopic quantum effects, superconductivity and superfluidity      433
Magnetic moment, total mean      219
Magnetization, spontaneous      453
Magnons      446
Maxwell construction      67 68
Maxwell relations      108 110
Maxwell — Boltzmann statistics      187 292
Maxwell’s velocity distribution      11
Mayer      414
Mayer, R.J.      15
Mayer’s cluster expansion      404
Mean occupation number      306
Mean occupation numbers, derivation of      310
Mean value      142 192
Mean value of all possible distributions, canonical ensemble as      200
Mean-field approximation      392
Meissner — Ochsenfeld effect      366 434
Microcanonical case      270
microcanonical ensemble      142 143 146
Microstate      44 124
Microstates $\Omega$, number of      123
Microstates in a simple system      46
Minimum energy      84
MIT bag model      387
Mixed state      261
Mixing entropy      132
Molar fraction      13
Molecular field approximation      392
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте