Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Debnath L. — Nonlinear water waves
Debnath L. — Nonlinear water waves



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Nonlinear water waves

Àâòîð: Debnath L.

Àííîòàöèÿ:

Wave motion in water is one of the most striking observable phenomena in nature. Throughout the twentieth century, development of the linearized theory of wave motion in fluids and hydrodynamic stability has been steady and significant. In the last three decades there have been remarkable developments in nonlinear dispersive waves in general, nonlinear water waves in particular, and nonlinear instability phenomena. New solutions are now available for waves modulatedin both space and time, which exhibit new phenomena as diverse as solitons, resonant interactions, side-band instability, and wave-breaking. Other achievements include the discovery of soliton interactions, and the Inverse Scattering Transform method forfinding the explicit exact solution for several canonical nonlinear partial differential equations.
This monograph is the first to summarize the research on nonlinear wave phenomena over the past three decades, and it also presents numerous applications in physics, geophysics, and engineering.


ßçûê: en

Ðóáðèêà: Ôèçèêà/Êîëåáàíèÿ è âîëíû/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1994

Êîëè÷åñòâî ñòðàíèö: 544

Äîáàâëåíà â êàòàëîã: 16.08.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Abel integral equation      297
Ablowitz      193 361 362 363
Abramowitz      87
Action integral      195
Added mass      21
airy      158
Airy function      87—88 91 131
Airy integral      87
Akylas      128—139 270 382
Alfven-gravity waves      307
Alfvgn velocity      307
Amplitude equation      369 380
Anisotropic wave      103
Anticlastic surface      332
Aranha      137
Associated Legendre equation      182
Associated Legendre functions      183
Attenuation coefficient      76
Average pseudo-Lagrangian      391 393
Average variational principle      317 321 324 329
Averaged lagrangian      320—321 325 329 330 342 392
Axisymmetric Laplace equation      337
Axisymmetric wave equation      335
Baddour      294
Baecklund transformation      188—189 192 193
Bagnold      69
Barnard      137
Battjes      409
Benjamin      64 198 333 342 356 368 377 399 417—423 435 454—456 460 488
Benjamin — Feir instability      377—378 418—423 427 442 454
Benjamin — Ono equation      207
Benjamin, Bona and Mahony equation      300 306
Benney      299 351 360 370 373 399 428—429 433 450 457
Bergin      413 422 461
Bernoulli's equation      6 278
Bessel equation      150 153
Bessel function      30 89 105 150 153 276 282 292
Bhattacharya      254—255 257
Bianchi's Theorem      191
Bifurcation      464 466 467
Bifurcation, asymmetric      464 466
Bifurcation, subharmonic      464 466
Bifurcation, superharmonic      464
Bifurcation, symmetric      464 466 467
Bilinear operator      204
Bohr — Sommerfeld rule      187
Bona      174 306
Bottom frictional dissipation      74
Bound states      175—176
Boundary layer      24 71 76
Boussinesq      158
Boussinesq equation      145 155—156 159 173 207 306
Bowden      419
Bowen      409
Breaking condition      154
Breaking of waves      150 405—408 461
Bretherton      324 433
Brunt — Vaelsaelae frequency      306
Bryant      428
Burgers equation      371 388
Caligny      70
Campbell      26
Capillary waves      44 53 474
Capillary-gravity waves      42—44
Carrier      147 151—152
Carter      74
CASE      437
Cauchy principal value      207 235 237 292 376
Cauchy — Poisson problem      83—91
Cauchy — Riemann equation      189 230
Chakraborty      294
Chandrasekhar      472 483
Characteristic curves      146 151 316 401—402
Chen      464 466
Cherkesov      127
Chezy law of resistance      147
Chiu      437
Chu      299 350 384 442
Cleaver      412
Cnoidal wave solution      164 165 366
Cohen      428
Cokelet      408 412
Cole — Hopf transformation      169
Collapsing breaker      408—409 411
Commutation relation      194 199
Conjugate variables      197
Conservation laws      3—4 168—169 195 349 438
Conservation of energy      9 177 196 323 331
Conservation of wave action equation      323—324
Conserved density      168 170
Constant of motion      168—169
Continuity equation      3
Continuum Hypothesis      2
Couette flow      27—29
Courant      332 336
Crapper      65 342 439
Crapper's nonlinear capillary wave solution      65
Crawford      377—378 450 452 454—458 460
Critical curve      125
Critical velocity      82 97 105 119 123—128
Cylindrical wave equation      152
D'Alembert solution      145
Dagan      137—138
Damping gravity waves      79
Davey      299 351 355—358 382—389 394 395 442 457 487
Davey — Stewartson equations      354
De Broglie waves      307
de Vries      159 399
Debnath      45 57 85 92 96 97 103—106 115—128 133 163 166 196 282 294 346 348 389 394 405 444
Debye      159
Diffraction potential      280
Diffusion equation      26 70
Dipole      14 18 20 286
DiPrima      423
Dirac delta function      45 85 97 116 130 137 186 442 447
Direct scattering problem      175 181
Dispersion neutral curve      357
Dispersion relation for Alfven-gravity waves      307
Dispersion relation for capillary-gravity waves      43 56 437 480
Dispersion relation for de Broglie waves      307
Dispersion relation for dispersive waves      61 304—305 311 314 318 370 376 379 380
Dispersion relation for electromagnetic waves      307
Dispersion relation for gravity waves      37 40—42 53 55 79 88 111—112 139 164 213 280 306 322 328 342 350 415—416 419 451 471
Dispersion relation for inertial waves      307
Dispersion relation for interfacial wave      471 483
Dispersion relation for internal waves      306
Dispersion relation for magnetohydrodynamic capillary-gravity waves      102—103
Dispersion relation for nonlinear waves      64 325 328 342 345 347 351
Dispersion relation for Rossby waves      307
Dispersion relation for ship waves      224
Dispersion relation for water waves      306 322 328 342 347 351 369 415 416 425
Dispersive waves      38 304—305 311 318 370 376 379 470
Diverging wave      216 218
Djordjevic      358—361
Dodd      203
Donnelly      391
Doppler shift      376
Drag coefficient      273
Drag force      287
Drazin      481 485 488
Dungey      381
Dutta      163 166 346 348
Dynamic condition      7
Dynamic force      285 288
Dynamic viscosity      22 77
Dysthe      371—377
Dysthe's equation      373 382
Eddy resistance      219
Electromagnetic wave      307
Elliptic function      163—167 346 365—367
Elliptic integral      164
Energy density      42 58 60 61 76 225 314 317 323
Energy dissipation      32 74
Energy dissipation function      32
energy equation      9 31—33 323
Energy flux      9—10 32 61 314 317 331
Envelope soliton      442
Equation, Abel's integral      297
Equation, amplitude      369 380
Equation, associated Legendre      182
Equation, axisymmetric Laplace      337
Equation, axisymmetric wave      335
Equation, Benjamin — Bona — Mahony      300 306
Equation, Benjamin — Ono      207
Equation, Bernoulli      6 278
Equation, Bessel      150 153
Equation, Boussinesq      145 155—156 159 173 207 306
Equation, Burgers      371 388
Equation, Cauchy — Riemann      189 230
Equation, conservation of wave action      323—324
Equation, continuity      3
Equation, cylindrical wave      152
Equation, Davey — Stewartson      354
Equation, diffusion      26 70
Equation, Dysthe      371 374 376 382
Equation, elliptic dispersion      332 335
Equation, energy      9 31—33 323
Equation, energy conservation      323 331
Equation, Euler      4 101 319 389—391 393—394
Equation, Euler — Lagrange      196—198 317
Equation, evolution      136 191—203 359—361 376—379
Equation, forced Korteweg — de Vries      130 139 306
Equation, Gardner      170
Equation, Gelfand — Levitan — Marchenko (GLM)      180 182 184—185
Equation, Hamilton      197 313
Equation, Hamilton — Jacobi      313
Equation, Helmholtz      295
Equation, hyperbolic dispersion      332 335 340
Equation, inertial wave      307
Equation, interaction      432—438
Equation, internal wave      306
Equation, Kadomtsev — Petviashvilli (KP)      139 356 361
Equation, Klein — Gordon      306
Equation, Korteweg — de Vries (KdV)      130 139 157 159 161 165 168 171 174 198 201 306 370 387
Equation, Laplace      5 12 36 102 116 130 275 337 352 372 469 478 481
Equation, Lax      199 201
Equation, long water wave      306
Equation, modified Bessel      276
Equation, modified KdV      166—167 169 174 189
Equation, Morison      274 286 294
Equation, nonlinear Schroedinger (NLS)      136 203 207 299 345 347 351 354 385 395 418 442 444 485
Equation, operator      464
Equation, Painleve      173
Equation, Poisson      359
Equation, Rossby wave      307
Equation, Schroedinger      175 307 344
Equation, shallow water      143—145 148
Equation, Sine — Gordon      192
Equation, Sturm — Liouville      175 182 201
Equation, variational      326 383
Equation, vorticity transport      24
Equation, water wave      5 12 36 129 134 275 352 371 418
Equation, wave      145 201 316 400
Equation, Whitham      60—61 314—315 317 319 329 350 383—385
Equation, Zakharov integral      449 451 453
Ertekin      139
Estabrook      189 191 203
Euler — Lagrange equation      196—198 317
Euler — Lagrange operator      197—198
Euler's constant      293
Euler's equation      4 101 3*19 389—391 393—394
Eulerian specification      2 67
Eulerian velocity      67
Everest      212
Evolution equation      136 191—201 359—361 376—379
Exponential integral      233
Faltinsen      298
Feir      333 342 356 368 382 399 416 418 421 435 454 460
Ferguson      377—378 428
Fermi      159
Fermi — Pasta — Ulam recurrence      160 378 428
Fife      439
Figure-of-eight      399 433—434 443 457
Fission      186
Flaschka      208
Flux      168 315
Forced KdV equation      130 139 306
Fordy      203
Foster      26
Fourier sine transform      28
Fourier transform      28 45 78 83 111 130 240 249 446
Fox      408 412
Frechet-derivative      196—197
Free surface condition      7—8 36 42 48 62—63 77 83 92 116 138 237 266 275 277 352 371 430 445
Free surface elevation      6 41 45—46 48 50 62—63 77 84—88 213 239—241 249 282 298 379 429 440 447 485
Freeman      356
Frictional resistance      219
Froude      210
Froude number      50 138—139 218 224 239
Froude — Krylov force      273
Fuchs      271 281
Function, Airy      87—88 131
Function, associated Legendre      183
Function, Bessel      30 89 105 150 153 276 282 292
Function, Dirac delta      45 85 97 116 130 137 186 442 447
Function, elliptic      163—167 346 348 365—367
Function, energy dissipation      32 74
Function, Hamiltonian      196—198
Function, Hankel      276 280 292
Function, hypergeometric      336 339
Function, Jacobi elliptic      163 167 346 348
Function, Kochin H-function      231—232 235—236
Function, modified Bessel      276
Function, phase      57—59 150 314 319
Function, Riemann      336
Function, slowly varying      59
Function, Stokes's stream      77
Function, theta      166
Gadd      212 264
Galilean invariant      175
Galvin      148 161 406 408 410—411
Garabedian      338 464
Gardner      160 169 171 197
Gardner equation      170
Gardner transformation      170
Garrett      324
Garrison      271
Gauss divergence theorem      3 9 20
Gaussian curvature      113—114
Gelfand — Levitan — Marchenko (GLM) equation      180 182—185
Generalized dipole      19
Gibbon      203
Glansdorff      390—391
Gravity waves      36 39—42 53
Great wave of translation      157
Green's formula      16 291
Green's theorem      234 291
Greene      171
Greenspan      147 151—152
Grimshaw      370
Group velocity      4 55—56 101 109 306 312 334 360 372 394 414 471 482
Gruber      472
Guza      409
H-function      231—232 235—236
Hagen      30
Hagen — Poiseuille flow      29
Hamilton      362—367
Hamilton — Jacobi equation      313
Hamilton's variational principle      10 317
Hamiltonian      196—198
1 2 3
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå