Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Gilmore R. — Lie Groups, Lie Algebras and Some of Their Applications
Gilmore R. — Lie Groups, Lie Algebras and Some of Their Applications



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Lie Groups, Lie Algebras and Some of Their Applications

Автор: Gilmore R.

Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1974

Количество страниц: 587

Добавлена в каталог: 30.03.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
$(G)^r$      29
$(V_N)^r$      29
$(x)^r$      33
$A_{1}$      281 283 284 291 307 314 317
$A_{2}$      281 283 284 285 291 307
$A_{3}$      350
$A_{ij}^{(n)}$      13 19
$A_{n}$      278 285 293 298—300 305 306 310 315 316 324 326 339 347 348 360 505
$B_{1}$      281 291 314
$B_{2}$      283 291 307 314 376
$B_{n}$      278 285 294—300 305 306 310 311 315 316 324 326 342 347 360 505
$c_{1}$      281 291 314
$C_{2}$ (root space)      283 291 300 307 314 316
$C_{2}$ (vector space)      136 147 148 159 179
$C_{2}^{2j+1}$      136 140
$C_{n}$      278 285 294—300 305 306 310 311 315 316 324 326 343 347 360 501 505
$D^{n}$      377 378 382 433
$D_{2}$      283 284 291 307
$D_{3}$      350
$D_{4}$      286 287 313
$D_{n}$      278 285 294—300 305 306 310 311 312 315 316 324 326 343 347 348 360 501 505
$E_{3}$      288 289 314
$E_{4}$      289 291 314
$E_{5}$      288 289 291 314
$E_{6(+2)}$      347 361 417 418
$E_{6(+6)}$      347 361 417 418
$E_{6(-14)}$      347 361 417 418
$E_{6(-26)}$      347 361 417 418
$E_{6(-78)}$      347 417 418
$E_{6}$      289—291 312—314 325 326 347 361
$E_{7(+7)}$      347 361 418 419
$E_{7(-133)}$      347 418 419
$E_{7(-25)}$      347 361 418 419
$E_{7(-5)}$      347 361 418 419
$E_{7}$      290 291 312—314 317 325 326 347 361
$E_{8(+8)}$      347 361 419
$E_{8(-24)}$      347 361 419
$E_{8(-248)}$      347 419
$E_{8}$      290 291 312—314 317 325 326 347 361
$F_{4(+4)}$      347 361 416 417
$F_{4(-20)}$      347 361 416 417 491
$F_{4(-52)}$      347 416 417 491
$F_{4}$      287 291 292 306 311 316 325 326 347 361 491
$f_{ijk...}$      34 35
$Gl(\eta, r)$      107 114
$G_2$      281—286 291 292 307—310 316 317 325 326 347 361
$G_n^{\gamma}(x)$      54
$G_{2(+2)}$      347 361 416
$G_{2(-14)}$      347 416
$H^{2}$      202—205 209 213 370 445
$H^{3}$      214
$H^{n}$      451 453 455 499
$H_{4}$      462 463 495
$h_{n}(X)$      54
$I_{d}$      40
$I_{p, q}$      339 340 342—344
$J_{3}$, matrix elements of      140 155 180
$J_{n, n}$      339 340 342 343
$J_{\pm}$, matrix elements of      139—141 155 180
$L^{2}$      21 54
$L_{n}^{\alpha}(x)$      54
$M^{(n)}$      21
$M_{ij}^{(n)}$      12 13
$O(n_{+}, n_{-};c)$      45—52
$O(n_{+}, n_{-};q)$      45—52
$O(n_{+}, n_{-};r)$      45—52 85
$PCS^{n}$      372
$PC_{n}$      371
$PQS^{n}$      372
$PQ_{n}$      311
$PRS^{n}$      372
$Pr_{N}$      371
$P_{3}$      31 32 105 118
$P_{4}$      2 11 20
$P_{n}(x)$      54
$P_{n}^{\alpha,\beta}(x)$      54
$P_{r}$      11 31—33
$Q_{n}$      7 49
$r$th-order tensor product      29
$R_1$      14 15 142 143
$R_2$      209 210 213 445 478
$R_3$      147 148 149 179
$R_n$      14 49 118 453 455
$R_{\mu\nu}{}^\lambda{}_\kappa$      132
$Sl_1(n, c)$      37 48 50
$Sl_2(n, c)$      37 48 50
$SO(3) \wedge T_3$      83
$SO(3, 1) \wedge T_{3, 1}$      83
$S^1$      179 328 427
$S^2$      179 202 203 206—209 213 367 370 444
$S^3$      214
$S^n$      365 368 384—386 388 390 392—394 399 400 427 430 431 450 453 455 499
$S^n$, surface area of      392—393
$S_{ij}^{(n)}$      13
$T^1$      143
$T_n(x)$      54
$v_n$      6 14 18 213
$V_N^\dag$      6
$Z_2$      143 200
$Z_n$      200
$\Gamma$ function      393
$\Gamma_{ij}{}^{\lambda}(g_{k})$      55
$\Gamma_{\mu \nu}{}^{\lambda}$      132
$\mathfrak{gl}(3, r)$      226 227 241
$\mathfrak{gl}(n)$      481 482
$\mathfrak{gl}(n, c)$      186 352
$\mathfrak{gl}(n, q)$      215
$\mathfrak{gl}(n, r)$      186
$\mathfrak{g}$      201 213 214 215
$\mathfrak{g}(1)$      505
$\mathfrak{g}(3)$      460
$\mathfrak{g}(3, 1)$      460
$\mathfrak{g}(n)$      456 472 505
$\mathfrak{g}^*$      200 201 215
$\mathfrak{h}_{4}$      423 461—463 494 495 497
$\mathfrak{iso}(2)$      210 444
$\mathfrak{iso}(3, 1)$      460
$\mathfrak{iso}(n)$      455 459
$\mathfrak{K}$      200 201 208 213 214 215
$\mathfrak{P}$      201 202 206 208 213 214 215
$\mathfrak{p}^*$      200 201 202 204 206 214 215
$\mathfrak{sl}(2, r)$      271
$\mathfrak{sl}(n)$      482
$\mathfrak{sl}(n, c)$      37 48 50 185—186 293 340
$\mathfrak{sl}(n, q)$      215
$\mathfrak{sl}(n, r)$      186 293 346
$\mathfrak{so}(1, 1)$      211
$\mathfrak{so}(2)$      205 207 208 210
$\mathfrak{so}(2, 1)$      202 205 211 429 430
$\mathfrak{so}(2n)$      274 276 344 501
$\mathfrak{so}(2n+1)$      118 274 276 278
$\mathfrak{so}(3)$      207 208 214 275 502
$\mathfrak{so}(3, 1)$      502
$\mathfrak{so}(4)$      214
$\mathfrak{so}(4, 1)$      429
$\mathfrak{so}(4, 2)$      429 430
$\mathfrak{so}(n + 1, n; r)$      296—297
$\mathfrak{so}(n)$      186 193—195 214 451 454 455 459 472 494
$\mathfrak{so}(n)$, Cartan — Killing metric on      251
$\mathfrak{so}(n, 1)$      454
$\mathfrak{so}(n, n; r)$      296—297
$\mathfrak{so}(n, q)$      215
$\mathfrak{so}(p, q)$      186 276 459
$\mathfrak{so}^*(2n)$      195 275 344
$\mathfrak{sp}(2n, r)$      296—297 426 501
$\mathfrak{su}(1, 1)$      201 203 205 271
$\mathfrak{su}(2)$      207 208 271 276 317
$\mathfrak{su}(n)$      185—186 239 240 274 276 293 340
$\mathfrak{su}(n; q)$      215
$\mathfrak{su}(p, q; c)$      276 293
$\mathfrak{su}^*(2n)$      186 215 293 346
$\mathfrak{usp}(2n)$      215 276 494
$\mathfrak{usp}(2p, 2q)$      276
$\mathfrak{u}(1)$      205 207 208 239
$\mathfrak{u}(2)$      494 495 497
$\mathfrak{u}(3)$      424
$\mathfrak{U}(n)$      185 186 194 195 214 239 240 274 276 427 494 500 501
$\mathfrak{u}(p, q)$      185 186
$\mathscr{D}^{j}$      141 253
$\mathscr{Y}$      145 146
$\mu$      162
$\omega_{L}$      163 164 165
$\Phi$      57
$\pi$-pulse      163 165—167 176—178
$\pi/2$-pulse      163—165 176 177
$\tau$-ordered product      114—117 161 162
$\widetilde{I}_{p}$      42 339
1-1      14
1-1 correspondence      2 16
Abelian      3 224 317
Abelian algebra      230—232 274 492
Abelian group      3 5 83 95 118 225
Abelian invariant subalgebra      236 243 268 444 449 453 477 482 484
Abelian invariant subgroup      72 340 342—344 346 424 425
Abelian subgroup      72 362
Abragam, A.      178 181
Abramowitz, M.      435
Accidental degeneracy      vi
Action integral      145
Action principle      145
Active interpretation of transformation      66
Ad(g)      83
Addition      2 3
Addition, pointwise      21
Adjacent interchange      11 21 30—32
Adjoint      266 298
Adjoint representation      106 216 218
Ado, I.D.      119
Ado’s theorem      104
Aghassi, J.J.      506
Algebra      8 9 12 13 19
Algebra for orthogonal groups      186 191
Algebra for symplectic groups      188 191
Algebra for unitary groups      185 190
Algebra, associative      9
Algebra, bases for classical      13 182—215
Algebra, direct sum      142
Algebra, irreducible      236
Algebra, linear      8
Algebra, noncompact      200
Algebra, representation for      19 149 158
Algebra, simple      236
Algebraic group      83 85
Algebraic properties, of Lie group      326—334
Algebraic structure      14
Algebraic structure on continuous group      63
Algebraic, equations      241
Algebraically closed      183 241 318
Analytic      77
Analytic continuation      186 192 212 421
Analytic functions      53 70 363 431
Analytic functions, bases for      21 33
Analytic group multiplication      111
Analytic isomorphism      94 107 114 119 151 152
Analytic mapping      114 372
Analytic structure      94
Analytically isomorphic      94
Angular coordinate      432
Angular momentum, orbital      23
Angular momentum, spin      23
Annihilate      242 243
Annihilation operators      423—425 427 461 499—501 505
Annihilation operators for Bosons      499—501 505
Annihilation operators for Fermions      499—501 505
Anomalous magnetic moment      162
Anticommutation      9 22
Anticommutation relations      499
Anticommutator      9
Anticommute      339
Antihermitian matrix      184 185 340 341 343 344 347 350—352
Antinormal order      172 173
Antipodal points      127 128 130
antisymmetric      9
Antisymmetric matrix      9 13 19 186 187 339 342 343 347
Antisymmetric matrix representation, of a group      30—33
Antisymmetric metric      40 41
Antisymmetric subspace      53
Antisymmetric tensor      30—33 259
Antisymmetrization      9
Antiunitary representation      v
Apostol, T.M.      56
Arecchi, F.T.      181 506
Associated Legendre polynomials, generating function for      181
Associative algebra      9 219 274 322 492
Associative algebra and Jacobi identity      104?105 491
Associativity      1 3 5 8 9 17 18 68 69 320
Associativity and Jacobi identity      104—105 491
Associativity for continuous group      64
Associativity for continuous group of transformations      65
Asteroid B-612      436 437
Atomic scattering factor      498
Aut      320—323 501
Automorphism      319—339
Automorphism, group      322
B      162 165 166 169
Baiquni, A.      349
Baker — Campbell — Hausdorff formulas      94 119 460—463 497 498 504
Baker — Campbell — Hausdorff formulas for SU(2)      149 152 153 157 168 169 173 179
Baker, G.A.      349 435
Baker, H.F.      119
Ball-box problem      32
Bartee, T.C.      23
Barut, A.O.      349 435
Baryon number      121 146
Bases      7 10—13 18 19 95 see
Bases for algebra      13 212
Bases renormalized      40 41
Basic root      297 298
Basis      7 12 19
Basis for algebra      184—189 294 298
Basis for analytic functions      70
Basis for Gl(n, c)      186
Basis for SO(n, c)      187
Basis for Sp(2n, c)      189
Basis vector      85 105 113 118 see
Basis vector for Lie algebra      217 219
Bateman, H.      349
BCH formulas      119 121 158 302 317 397 401 see
BCH formulas for SU(2)      149 152 153 157 168 169 173 179
BCH formulas on cosets      381
Berezin, F.A.      435
Berger, M.      435
Bessel function      495 496
Bessel, equation      496
beta function      400
Bethe, H.A.      56
Biedenharn, L.C.      277 317
Bilinear      8 12 38
Bilinear antisymmetric metric      187
Bilinear metric, antisymmetric      187
Bilinear metric, symmetric      186
Bilinear metric-preserving quaternion groups      44—45
Bilinear symmetric metric      186
Bilinearity      5
Binomial coefficients      139
Binomial theorem      137
Birkhoff, G.      23
Bishop, R.L.      86
Bloch sphere      170
Bloch state      171
1 2 3 4 5 6 7
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте