Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Ercolani N.M., Gabitov I.R., Levermore C.D. — Singular limits of dispersive waves
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Singular limits of dispersive waves
Àâòîðû: Ercolani N.M., Gabitov I.R., Levermore C.D.
Àííîòàöèÿ: In fluid dynamics, dispersion of water waves generally refers to frequency dispersion, which means that waves of different wavelengths travel at different phase speeds. Water waves, in this context, are waves propagating on the water surface, and forced by gravity and surface tension. As a result, water with a free surface is generally considered to be a dispersive medium.
Surface gravity waves, moving under the forcing by gravity, propagate faster for increasing wavelength. For a given wavelength, gravity waves in deeper water have a larger phase speed than in shallower water. In contrast with this, capillary waves only forced by surface tension, propagate faster for shorter wavelengths.
Besides frequency dispersion, water waves also exhibit amplitude dispersion. This is a nonlinear effect, by which waves of larger amplitude have a different phase speed from small-amplitude waves.
ßçûê:
Ðóáðèêà: Ôèçèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 1994
Êîëè÷åñòâî ñòðàíèö: 369
Äîáàâëåíà â êàòàëîã: 16.02.2014
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
pair 79
-function 70 275 283
Abel hierarchy 84—87
Abel transform 78 80 107 177
Abelian differential 3 8 9 16 106—108 115 162
Abelian integral 108 109 288
action 166 173 216 241 274 278 305—306 311
Adams — Bashfort method 333—335 337 341
Adiabatic 105 113 216 274
Angle-representation 276 279 281 283—288
Asymptotic ansatz 113 114 179
Atomic measure 251—253
Attractor 39—40 52
Autocorrelation function 183—201
Averaged Whitham equation for Toda lattice 5—10
Backlund transformation 118 146
Baker vector/Baker function 121 122
Baker — Akhiezer function 9 79—82 109 112 118 120 177
Benney equations 53 55—59 61 65 143—155 168 170
Benney hierarchy 61—62 65
Bifurcation 39—40 48 305 306 309 311
Billiards 219—234
Binary oscillation 331—332; see Period-two oscillation
Boltzmanfi type equation 220 225 233
Boussinesq equation 61 64—65
Branch points of a Riemann surface 3 8 10 11 16 41 56 59 65 70 71 74 76 80 84 106—108 110 111 113—115 143 179
Breather 40—51 283
Brownian motion 233
Bunimovich — Sinai theorem 219 220 233
Burger’s Equation 28 136—140 157 160 161 329 330
C. Neumann problem 279 285 286 288
Cantor set 301 304 305 310 311
Cauchy’s kernel 65 79—82
Caustic 23—24 34—35 240—243 279
Central limit theorem 233
Chaos / chaotic 40 105 331 336 339 342
Characteristic speed/velocity 4 5 14 15 64
Christophel symbols 144
Chromatography 144 145 153
Compatibility conditions in shock dynamics 357—359
Complex structure, deformation of 70 73 77 78
Complex tori 75
Configuration space 205
Conformal field theory 70
Connection 77 274 283
Conoidal waves 203 255
Conservation laws 5ff 37 68 90 94 145 146 149—153 236 240 330 331 332 345 357 360
Contact discontinuity 329 333 336 341 342 345
Contraction principle 351
Contravariant derivative 290
Convection 315 316
Couette flow 315 316
Covariant derivative 290
Critical magnetic field 183—201
Curvature 144
Cusp / cuspidal 119 126 133 139—140
Cuts 62—64
CYCLE 42—43 71—72 75 106 108 216 282
Darboux transformations 117—134
Defocusing NLS equation 21—27 235—238 242—245 248 249 251 276 279 283
Degree of mapping Z 1
Diffusion coefficient 219 220 226 228 233 234
Diffusion equation 219 226 228
Dirac operator 246
Dispersionless Lax equations 61—66
Dispersionless limit of integrable systems 165—174
Dispersive hydrodynamics 89—104
Divisor 120 122 125 177 179 297 302 304
Doppler frequency 324 325
Dressing 174 177
Driver amplitude 44—45
Driver frequency 43
Dubrovin equations 107 114—115
Duhamel integral 212
Dyson formula 260
Egorov class 145—147
Eikonal equation 22 28 34 35 36 240 241
Einstein — Kubo formula 233—234
Electrophoresis 144 145 153
Ellipsoid 276 277
Elliptic curve 120 122
Elliptic functions 68 265
Elliptic integrals 68 74 94—96 103 135 137 143 160 204 265 267 269
Energy density 316
Energy-phase modulation equations 43—44
Entropy solution of Hopf equation 333
Euler hydrodynamics equations 94
Euler system 237 238 254
Euler — Poisson type equation 90 96 136—139
Evolution equations 37 111
Finite horizon property of a billiard 222—223 228 230 233—234
Finite-gap 69—70 78—80 82—84 175—180 204 205 208 209 211 215 216 289
Flaschka’s form of Toda lattice equations 6
Focusing NLS equation 27—37 235 236 242—245 249 283
Fractional power 62
Free energy 316 319
fundamental frequency 300 304
Galilean invariance of NLS 28
Galilei transformations 145—147 149 151 153
Gas dynamics 22 169 173
Gas law 22 23
Gauge invariance / gauge transform 168 172
Gauss hypergeometric function 100
Gelfand — Dikii “fractional power” ansatz 62
Gelfand — Levitan integral equations 177
Generalized hodograph method 89 90—94 99 109 154
Genus 2 4 5 8 13 16 17 70 71 75 81 106 118 175 254 267 269
Geodesic flow, ergodic property of 219
Geometric phases 273—295
GHM see Generalized hodograph method
Goursat problem 90 97 101
GP problem see Gurevich — Pitaevsky problem
Grassmanian 118—120
Green’s formula 231
Green’s function 304
Gurevich — Pitaevsky problem 89 90—94 96—99 203
Hamilton — Jacobi equation 63 65 173 174 213
Hamiltonian 61—62 105—107 112 173 174 183 275—280 286 287 289 290 298 299 305
Hamiltonian flow 105 114 276 278 279 285 286 287
Hamiltonian system 68 105 107 143—146 150—153 167 173 216 236 257 273 278 280 281 285—288 298 302
harmonic oscillator 299—300
Heat transfer 316
Helix 320 326
Hilbert space 303
Hilbert transform 254 350
Hilbert — Schmidt operator 230
Hodograph 4 16 61 63 68—69 89 90—94 99 102 103 109 136—140 154
Holomorphic differential 42 72 73 75 77 106 177
Homoclinic 40 273—275 279 285—288
Hopf equation 249 329 331 333—337 341—344 359
Hydrodynamic symmetries 92 149
Hydrodynamic-type equations/systems 53 67 68 89 143 145 149—154 225
Hyperelliptic 70—78 80 106 126 175 204 209 211 215 276
Hypergeometric equation 99
Hypergeometric function 100
Integrable / nonintegrable numerical scheme 329 331 336 341 342 345
Integrable system 165—174
Invariant tori 105 216 276 279 300 302
Inverse scattering problem method 53—59 61 135 167 170 176 178 246 248 251 259 348
Inverse scattering transform 67 69 79 81 249
Ising chain 183—201
Isospectral symmetries 79—82
ISP method see Inverse scattering problem method
Its — Matveev formula 175 204
Jacobi -function 204
Jacobi identity 144
Jacobi problem 286 288
Jacobi transformation 267
Jacobi variety 273 274 279 281 283 286 289
Jacobian 106
Jacobian matrix 332
Jost functions 54
Kac — van Moerbeke lattice 331 341 342
Kadomtsev — Petviashvili equation 67 69 78—84 123 132 167—168
Kadomtsev — Petviashvili equation, dispersionless 167—168
Kadomtsev — Petviashvili equation, finite-gap inverse scattering transform for 81
Kadomtsev — Petviashvili equation, finite-gap solutions 69 78—79 82—84
Kadomtsev — Petviashvili equation, isospectral symmetries 79—82
Kadomtsev — Petviashvili equation, Lax pair for 81
Kadomtsev — Petviashvili equation, nonisospectral symmetries 82—84
KAM theory see Kolmogorov — Arnold — Moser theory
KdV equation, see Korteveg — de-Vries equation KdV functions 212
KdV hierarchy 84 347—356
KdV hydrodynamics 89 91
KdV — Whitham problem 2 3
KdV — Whitham problem vs. Toda — Whitham problem 2
kinetic energy 305 306 310
KN equation see Krichever — Novikov equation
Kolmogorov — Arnold — Moser theory 114 180 205 302
Kolmogorov — Petrovsky — Piskunov problem 322
Korteveg — de-Vries equation 2 4 53—55 61 64 67—88 89 90—93 95 96 119 126—128 131—133 143—155 157 162 163 175—181 203 205—209 216 238 248 249 259 275—280 284—291 298 330 345 347-356
Korteveg — de-Vries equation, pair for 79
Korteveg — de-Vries equation, -equation for 53 55
Korteveg — de-Vries equation, averaged 4 68 70 143—155
Korteveg — de-Vries equation, dispersionless 4 53—55 61 64 180
Korteveg — de-Vries equation, finite-gap solutions 69 79—80 82—84 175—180 208 209 216
Korteveg — de-Vries equation, isospectral symmetries 79—82
Korteveg — de-Vries equation, Lax pair for 79
Korteveg — de-Vries equation, linearized 206
Korteveg — de-Vries equation, moving waves 67
Korteveg — de-Vries equation, nonisospectral symmetries of 67—88
Korteveg — de-Vries equation, quasi-periodic solutions 4
Korteveg — de-Vries equation, reflecting coefficient for 54
Korteveg — de-Vries equation, shock problem for 176—179
Korteveg — de-Vries equation, symmetries of 69
Korteveg — de-Vries equation, Tsarev equations for 90 162
Korteveg — de-Vries equation, wave breaking problem for 89 90—93
Korteveg — de-Vries equation, weak dispersion limit of 2 4
kp see Kadomtsev — Petviashvili equation
KP flow 117 118 125
KP hierarchy 119
KP vertex operator 130
Krasnoselskii theorem 306
Krichever — Novikov equation 119 127 131—133
Krichever — Novikov’s formalism 120 123
Krichever’s scheme 109
Kruskal symmetries 149 150 152
Kuzmak — Whitham averaging ansatz 105 114
Lagrangian 173
Lagrangian submanifold 278 280 281 286 289
Laminar state 315 316
Laplace integral 261
Laplace — Beltrami type operator 290
Lax entropy 237
Lax equations 61—66 167
Lax equivalence theorem 227 233
Lax pairr 6 79 81 257
Lax — Levermore minimizer 157—164
Lax — Levermore problem 203
Lax — Levermore — Venakides theory 14 135 162
Legendre transform 305
Lie algebras 289
Lie derivative 77
Line bundle 118 120—122 126
Linear fractional transformation 123 127
Linear stability 318—319
Liouville equation 233—234
Liouville theorem 186
Liouville tori 105—116
Lorentz gas of hard spheres 219—227 229—230
Lorentz gas with accomodation reflection 221—223 227—228 230-233
Lyapounov functional 316
Lyapounov theorem 316
Lyapounov — Schmidt decomposition 302 304—305
Magnetic field 183—201
Markov partition 219 233
Maslov method 289
Modulation equations 27—28 37 39—52 89 331 333 342 345
Moduli space 76 78 273
monodromy 273—295
Moving frame 258
Multi-phase averaged system 135 143 149
Multifrequency averaging theory 203—217
Multiphase asymptotics 204 215
Nash — Moser method 297 302 304
Neumann system 105 111 112 114
NLS equation see non-linear Schr dinger equation
Non-linear Schr dinger equation 21—38 55 61 93—95 169 180 235—255 276 279—281 283 291 298 328
Non-linear Schr dinger equation, defocusing 21—27 89 93—94 235—238 242—245 248 249 251 276 279 283
Non-linear Schr dinger equation, focusing 27—37 235 236 242—245 249 283
Non-linear Schr dinger equation, Galilean invariance of 28
Non-linear Schr dinger equation, semiclassical theory of 21—37 235—255
Non-linear waves 297—313
Nondissipative shock waves 89—92 97 98 99 102
Nonisospectral integrable equations 69
Nonisospectral symmetries 78—79 82—87
Nonlinear wave equation 299 303 305
NSW see Nondissipative shock waves
Number density 220—221 223—225 228 233
Numerical scheme 329 342
Optical fibers 24—27
Optical pulses 24
Optical shocks 21—37
Oscillations arising in numerical experiments 329—346
Painleve equation 105
Parabolic structure 121 122
Pauli matrices 183
Period matrix 41—43 78
Period-two oscillations 331—333 336—345
Periodic solutions 297 299 300—302 304 307 310
Perturbed modulation equations, numerical integration of 44—51
Phase space 220 276 279 280 297 302
Poisson bracket 62 144 174 236 247
Potential 80 81 90 94—96 105 107 112 150 177 179 211 235 236 240 299 305—307 311
Potential metric 146 151—153
Pre-chaotic 40 52
Presoliton solutions 291
Principle of least action 305—306 311 312
Quadric 274 276 288
Quasi-periodic geodesic 277 279
Quasi-periodic solutions 286 291 297
Quasi-simple wave 89 90 92 99—103 367
Quasiclassical limit 53—59 207
Quasimomentum 72 80 211
Reflection laws 219—222 234
Regularization of integrals 53 57
Resonance 105 203—217 297—313
Resonant group 300—302 304
Reynolds number 315
RH problem see Riemann — Hilbert problem
Riccati equation 54 124
Riemann (diagonal, characteristic) form 68 84 89 254
Riemann bilinear relations 72—74 268
Riemann constants 78 81
Riemann invariant form of 61
Riemann invariants 22 62 68—70 92 143 238 239 249 255
Riemann manifold 290
Riemann metric 290
Riemann problem 75—78
Riemann surface 3 8 10 11 16 41—43 56 59 65 70—78 80 81 112 143 146 216 254 269 274 276 280 282—284 286 287 289
Riemann surface, branch points of 3 8 10 11 16 41 56 59 65 70 71 74 76 80 106—108 110 111 143
Riemann surface, cycles on 42—43 71—72 106 108 282
Riemann surface, deformations of 75—78
Riemann surface, differentials on 71—75 106
Riemann surface, genus of 70 71 75 81 106 254 269
Riemann surface, local parameter 71
Riemann surface, matrix of periods 78
Riemann surface, moduli space of 75—78
Riemann theta function 41 78 106 112 113 118 204 211
Riemann wave 92 99
Ðåêëàìà