Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Sornette D. — Critical phenomena in natural sciences | |
Kadison R.V., Ringrose J.R. — Fundamentals of the theory of operator algebras (vol. 1) Elementary Theory | 187, 230, 231 |
Agarwal R.P. — Difference Equations and Inequalities. Theory, Methods and Applications. | 82, 930 |
Êîðìåí Ò., Ëåéçåðñîí ×., Ðèâåñò Ð. — Àëãîðèòìû: ïîñòðîåíèå è àíàëèç | 716 |
Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1) | 201, 213 |
Rudin W. — Fourier Analysis on Groups | 3, 13 |
Hunter J.K., Nachtergaele B. — Applied Analysis | 150, 298, 359 |
Grinstead C.M., Snell J.L. — Introduction to Probability | 286, 291 |
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 1) Functional analysis | 323, 324 |
Benvenuto N., Cherubini G. — Algorithms for communications systems and their applications | 13 |
Doob J.L. — Stochastic processes | 78 |
Kassel C. — Quantum Groups | 49, 69, 237, 479 |
Lang S. — Algebra | 85, 116 |
Ogata K. — Modern Control Engineering | 33 |
Berger M. — A Panoramic View of Riemannian Geometry | 420 |
Bird R.B., Lightfoot E.N., Stewart W.E. — Transport Phenomena | 418, 763 |
Oksendal B. — Stochastic differential equations : an introduction with applications | 302 |
Nathanson M.B. — Elementary methods in number theory | 139 |
Graham R.L., Knuth D.E., Patashnik O. — Concrete mathematics | 197, 319, 339—350 |
Pollard D. — Convergence of Stochastic Processes | 35, 49, 54 |
Meyn S.P., Tweedie R.L. — Markov Chains and Stochastic Stability | 43, 74, 520 |
Allen R.L., Mills D.W. — Signal analysis. Time, frequency, scale and structure | 115, 176 |
Brandwood D. — Fourier Transforms in Radar and Signal Processing | 18—21 |
Bultheel A. — Wavelets with applications in signal and image processing | 14—18, 33, 109, 118 |
Streater R.S., Wightman A.S. — PCT, Spin and Statistics, and All That | 41 |
Gray R.M., Davisson L.D. — Introduction to statistical signal processing | 406 |
Baker A. — Algebra and Number Theory | 48 |
Felinger A. — Data analysis and signal processing in chromatography | 29 |
Gilkey P.B. — Invariance Theory: The Heat Equation and the Atiyah-Singer Index Theorem | 2 |
Dickson L.E. — Algebraic invariants | 85 |
Hyvarinen A. — Independent Component Analysis | 369 |
Bini D., Pan V.Y. — Polynomial and matrix computations. Fundamental algorithms. Vol.1 | 13, 221 |
Garnett J.B. — Bounded Analytic Functions | 12, 13 |
Henrici P. — Applied and Computational Complex Analysis (Vol. 2) | 197, 239, 242, 244, 245, 246 |
Henrici P. — Applied and Computational Complex Analysis (Vol. 3) | 55, 57, 58, 60, 62, 175, 180 |
Molchanov V.F. — Harmonic Analysis on Homogeneous Spaces | 8, 35 |
Koosis P. — Introduction to Hp Spaces (Cambridge Tracts in Mathematics) | 135 |
Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 1) | 262 |
Rudin W. — Real and Complex Analysis | 146, 148, 192 |
Porter D., Stirling D.S.G. — Integral equations: a practical treatment, from spectral theory to applications | 333 |
Balser W. — From divergent power series to analytic functions | 47 |
Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 2) | 262 I |
Widder D.V. — Advanced calculus | 380, see also Resultant |
Fulton W., Harris J. — Representation Theory: A First Course | 38 |
Benson D. — Mathematics and music | 75, 235 |
Katznelson Y. — Introduction to Harmonic Analysis | 5, 40, 122, 150 |
Ehlers J.F. — Mesa and Trading Market Cycles: Forecasting and Trading Strategies from the Creator of MESA | 82 |
Bailey N.T.J. — The Elements of Stochastic Processes With Applications to the Natural Sciences. | 7 |
Mukamel S. — Principles of Nonlinear Optical Spectroscopy | 290, 295 |
Bateman P.T., Diamond H.G. — Analytic Number Theory: An Introductory Course | 14 |
Chaudhry M.A., Zubair S.M. — On a Class of Incomplete Gamma Functions with Applications | 47, 446 |
Kriegl A., Michor P.W. — The Convenient Setting of Global Analysis | 27 |
Davies E. — Spectral Theory and Differential Operators | 46 |
Adams R.A. — Sobolev Spaces | 29, 90, 199 |
Balser W. — Formal power series and linear systems of meromorphic ordinary differential equations | 178 |
Bellman R. — Methods of nonlinear analysis (Vol. 1) | 7, 256 |
Debnath L., Mikusinski P. — Introduction to Hilbert Spaces with Applications | 79 |
Diaconis P. — Group Representations in Probability and Statistics | 7 |
Lorentzen L., Waadeland — Continued fractions and applications | 484 |
Debnath L. — Nonlinear Partial Differential Equations for Scientists and Engineers | 33 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume III: Analysis | 108, 404n |
Mahmoud H.M. — Evolution of random search trees | 40, 95, 198 |
Franklin P. — Fourier Methods | 98(15—17), 213, 214(40) |
Katznelson Y. — Introduction to Harmonic Analysis | 4, 42, 135, 144 |
Kolassa J.E. — Series Approximation Methods in Statistics | 8, 18 |
Lim Ch., Nebus J. — Vorticity, Statistical Mechanics, and Monte Carlo Simulation | 75 |
Lam Y. — Geometric Process and Its Applications | 11, 259 |
Gracia-Bondia J.M., Varilly J.C., Figueroa H. — Elements of Noncommutative Geometry | 38, 523, 630 |
Gorenflo R., Vessella S. — Abel Integral Equations: Analysis and Applications | 64 |
Sepanski R.M. — Compact Lie Groups | 71 |
Halmos P.R. — Measure Theory | 269 |
Garnett J.B. — Bounded Analytic Functions | 11, 13 |
Dyke Ph.P.G. — Managing Mathematical Projects - with Success! | 58 |
Borwein P., Choi S., Rooney B. — The Riemann Hypothesis | 471 |
Shafarevich I.R., Kostrikin A.I. (ed.) — Basic Notions of Algebra | 64 |
Dudley R.M., Fulton W. (Ed) — Real Analysis and Probability | 284, 303—304, 310, 314, 326 |
Sweedler M. — Hopf algebras | 72 |
Kohonen T. — Self-organizing maps | 265 |
Lam T.Y. — A first course in noncommutative ring theory | 90 |
Debnath L. — Linear Partial Differential Equations for Scientists and Engineers | 448, 467 |
Breuer L., Baum D. — Introduction to Queueing Theory and Matrix-Analytic Methods | 112 |
Palmer J. — Planar Ising Correlations | 79 |
Everest G., Ward T. — An Introduction to Number Theory | 164 |
Lindner M. — Infinite Matrices and their Finite Sections: An Introduction to the Limit Operator Method | 156 |
Huybrechts D. — Fourier-Mukai Transforms in Algebraic Geometry | 205 |
Zalinescu C. — Convex Analysis in General Vector Spaces | 43 |
Strauss W.A. — Partial Differential Equations: An Introduction | 78, 328—329 |
Resnick S.I. — A probability path | 154, 293 |
Wise G.L., Hall E.B. — Counterexamples in Probability and Real Analysis | 18, 27, 116, 118, 132, 173, 183 |
Surowski D. — Workbook in higher algebra | 152 |
Haran S.M.J. — Arithmetical Investigations: Representation Theory, Orthogonal Polynomials, and Quantum Interpolations | 109, 138 |
Comtet L. — Advanced Combinatorics. The Art of Finite and Infinate Expansions | 44, 154, 227 |
Falconer K.J. — Techniques in Fractal Geometry | 114 |
Chatfield C. — The Analysis of Time Series: An Introduction | 16 |
Hahn L.- Sh., Epstein B. — Classical Complex Analysis | 384 |
Chui C.K., Chan A.K., Liu C.S. — Wavelet Toolware: Software for Wavelet Training | 2, 16, 38 |
Mishura Y.S. — Stochastic Calculus for Fractional Brownian Motion and Related Processes | 59 |
Szkelyhidi L. — Discrete Spectral Synthesis and Its Applications | xi, xiv, 8, 17, 19, 30, 49, 69, 73, 77, 91—94, 97, 103,104 |
Oksendal B. — Stochastic Differential Equations: An Introduction With Applications | 316 |
Krantz S.K. — Partial Differential Equations and Complex Analysis | 43 |
Williamson S. — Combinatorics for computer science | 166, 189 |
Billinge S.J.L., Thorpe M.F. — Local structure from diffraction | 142, 143 |
Ross S. — A First Course in Probability | 265 |
Zoladek H. — Monodromy Group | 362 |
Weickert J. — Visualization and Processing of Tensor Fields: Proceedings of the Dagstuhl Workshop | 302 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 468, 663 |
Reed M., Simon B. — Methods of Functional Analysis (in 4 volumes). Volume 1: Functional Analysis | 323, 324 |
Khuri A.I. — Advanced calculus with applications in statistics | 499 |
Jones J.A., Jones J.M. — Elementary Number Theory | 157 |
Peiponen K.-E., Vartiainen E.M., Asakura T. — Dispersion, complex analysis and optical spectroscopy. Classical theory | 18 |
Balescu R. — Equilibrium and nonequilibrium statistical mechanics | 515, 517 |
Petrov V.V. — Sums of Independent Random Variables | 6, 7 |
Barlow R. — Statistics: A Guide and Reference to the Use of Statistical Methods in the Physical Sciences | 197 |
Fink A.M. — Almost Periodic Differential Equations | 4.10 |
Dudgeon D.E., Mersereau R.M. — Multidimensional Digital Signal Processing | 15—16, 225, 264 |
Lifanov I.K., Poltavskii L.N., Vainikko G.M. — Hypersingular integral equations and their applications | 27, 32, 34, 122, 123 |
Rudin W. — Functional analysis | 155, 166 |
Najim K., Ikonen E., Daoud A.-K. — Stochastic processes. Estimation, optimization and analysis | 5, 64, 66, 126 |
Knuth D.E. — The art of computer programming (vol. 2 Seminumerical Algorithms) | 305, 318, 525, 586 |
Lang S. — Undergraduate Algebra | 99 |
Lang S.A. — Undergraduate Analysis | 283, 311, 355 |
Purdom R.W., Brown C.A. — The analysis of algorithms | 269, 282, 306, 393—395 |
Henneaux M., Teitelboim C. — Quantization of Gauge Systems | 348 |
Lang S. — Real Analysis | 71, 355 |
Slade G. — The Lace Expansion and Its Applications | 2 |
Mukamel S. — Principles of nonlinear spectroscopy | 290, 295 |
Fundamentals of engineering. Supplied-reference handbook | 135 |
Waseda Y. — Novel Application of Anomalous (Resonance) X-Ray Scattering for Structural Characterization of Disordered Materials | 107 |
Shiryaev A.N. — Probability | 241, 377 |
Kannan D. (ed.), Lakshmikantham V. (ed.) — Handbook of stochastic analysis and applications | 146 |
Mahmoud H.M. — Sorting: a distribution theory | 121, 167, 188, 239, 268—269, 301 |
Glenn O.E. — A Treatise on the Theory of Invariants | 93, 220 |
Bichteler K. — Integration - a functional approach | 131 |
Jahne B. — Digital Image Processing | 52, 86, 95, 195, 235, 350 |
Kuo W., Zuo M.J. — Optimal Reliability Modeling: Principles and Applications | 14 |
Rudin W. — Real and complex analysis | 170, 175, 178 |
Silverstein M.L. — Boundary Theory For Symmetric Markov Processes | 22.12 |
Sokolnikoff I.S. — Mathematics of Physics and Modern Engineering | 188 |
Guggenheimer H.W. — Applicable Geometry | 70 |
Bratteli O., Robinson D.W. — Operator Algebras and Quantum Statistical Mechanics (vol. 1) | 249, 252 |
Elliot P.D.T.A. — Probabilistic Number Theory One | 30, 254—255 |
Kato G., Struppa D.C. — Fundamentals of algebraic microlocal analysis | 84, 138, 140 |
Kythe P.K. — Fundamental Solutions for Differential Operators and Applications | 6, 27 |
Tanimoto S.L. — The elements of artificial intelligence. An introduction using LISP | 414 |
Bachman G., Beckenstein E. — Fourier And Wavelet Analysis | 268, 328, 370 |
Sheil-Small T. — Complex polynomials | 172 |
Stakgold I. — Green's Functions and Boundary Value Problems | 104, 163, 363 |
Patterson S.J. — An introduction to the theory of the Riemann zeta-function | 118, 123 |
Simon B. — Representations of Finite and Compact Groups | 25, 38 |
Santner T.J., Williams B.J., Notz W.I. — The Design and Analysis of Computer Experiments | 31 |
Helemskii A.Ya. — Lectures and Exercises on Functional Analysis, Vol. 233 | 312 |
Kadison R.V., Ringrose J.R. — Fundamentals of the Theory of Operator Algebras (vol. 2) Advanced Theory | 187, 230, 231, 433, 1041 |
Furui S. — Digital Speech Processing, Synthesis, and Recognition | 387 |
Bergeron F., Labelle G., Leroux P. — Combinatorial Species and Tree-like Structures | 348—349, 357 |
Banerjee P.P., Poon T.-C. — Principles of applied optics | 8 |
Brocker Th., Dieck T.T. — Representations of Compact Lie Groups | 67, 83, 129, 139 ff |
Bruggeman R.W. — Fourier Coefficients of Automorphic Forms | 97 |
Knuth D.E. — The art of computer programming (Vol. 2. Seminumerical algorithms) | 290, 385, 535, 551 |
Kammler D.W. — First Course in Fourier Analysis | 89—90 |
Strichartz R.S. — The way of analysis | 297, 698 |
Young M. — Optics and Lasers: Including Fibers and Optical Waveguides | 7.2.6, 7.3.1, 7.3.2, 7.4.1, 7.4.3, 7.4.5 |
Havin V.P., Nikolski N.K. (eds.) — Linear and Complex Analysis Problem Book 3 (part 2) | 3.8, 14.9, 14.14, S.14.20, 20.4 |
De Finetti B. — Theory of probability (Vol. 1) | 277 |
Nahin P.J. — The Science of Radio | 128—130, 133, 137, 141 (problem), 146, 169, 274, 277 |
Schechter M. — Spectra of partial differential operators | 41 |
Strang G. — Linear Algebra and Its Applications | 183, 303 |
Bingham N.H., Goldie C.M., Teugels J.L. — Regular variation | see “Lebesgue convolution”, “Lebesgue — Stieltjes convolution”, “Mellin convolution”, “Mellin — Stieltjes convolution” |
Kienzler R., Herrmann G. — Mechanics of material space: with applications to defect and fracture mechanics | 133, 143—146 |
Kunz K.S., Luebbers R.J. — The finite difference time domain method for electromagnetics | 144, 145, 170, 171, 306, 314 |
Hannan E. J. — Multiple time series | 80, 83 |
Lyons R.G. — Understanding Digital Signal Processing | 20 |
Burnell J., Berry R. — Handbook of Astronomical Image Processing | 365, 464 |
Qiu P. — Image processing and jump regression analysis | 191, 196, 202, 237, 239, 252, 269 |
Kirillov A.A. — Elements of the Theory of Representations | 140 |
Goswami J.C., Chan A.K. — Fundamentals of Wavelets : Theory, Algorithms, and Applications | 24, 39, 147 |
Demmel J.W. — Applied Numerical Linear Algebra | 324, 326 |
Govil N.K. (ed.), Mohapatra R.N. (ed.), Nashed Z. (ed.) — Approximation theory: in memory of A. K. Varma | 210, 478 |
Demidov A.S. — Generalized Functions in Mathematical Physics: Main Ideas and Concepts | 14, 92, 93 |
Graham C.C., McGehee O.C. — Essays in Commutative Harmonic Analysis | 122 |
Morimoto M. — Introduction to Sato's hyperfunctions | 14 |
Saaty T.L. — Elements of Queueing theory with applications | 58, 77, 113, 218, 299 |
Callaghan P. — Principles of Nuclear Magnetic Resonance Microscopy | 8—9, 45, 135, 386 |
Okninsky J. — Semigroup algebras | 97 |
Mix D.F., Olejniczak K.J. — Elements of Wavelets for Engineers and Scientists | 116 |
Pepinsky R. (ed.), Robertson J.M. (ed.), Speakman J.C. (ed.) — Computing methods and the phase problem in X-ray crystal analysis | 18, 275 |
Kenzel W., Reents G., Clajus M. — Physics by Computer | 14, 21 |
O'Donnell C.J. — Incidence Algebras | 150, 151, 153, 156, 157, 159 |
Duda R.O., Hart P.E., Stork D.G. — Pattern Classification | 22 |
Bogolubov N.N., Logunov A.A., Todorov I.T. — Introduction to Axiomatic Quantum Field Theory | 72—76, 95, 104, 456—459 |
Betten J. — Creep Mechanics | 191—192, 289, 301 |
Billingsley P. — Probability and Measure | 272 |
Aigner M. — Combinatorial Theory | 138 |
Bezrukavnikov R., Finkelberg M., Schechtman V. — Factorizable Sheaves And Quantum Groups | V.15.3 |
Grimmett G., Stirzaker D. — Probability and Random Processes | 70, 415 |
Hanna J.R., Rowland J.H. — Fourier Series, Transforms, and Boundary Value Problems | 180—181 |
Aldrovandi R. — Special matrices of mathematical physics (stochastic, circulant and bell matrices) | 87, 90 |
Erdelyi A. — Higher Transcendental Functions, Vol. 2 | 45 |
Asmar N.H. — Partial Differential Equations with fourier series and boundary value problems | 402, 421, 194 |
Bratteli O., Robinson D.W. — Operator Algebras and Quantum Statistical Mechanics (vol. 2) | 249, 252 |
Kozen D.C. — The Design And Analysis Of Algorithms | 186 |
Aczel J., Dhombres J. — Functional equations in several variables with applications to mathematics, information theory and to the natural and social sciences | 92, 102, 155 |
Nakamura K., Harayama T. — Quantum chaos and quantum dots | 16, 59 |
Chan Man Fong C.F., De Kee D., Kaloni P.N. — Advanced Mathematics for Engineering and Sciences | 47 |
Bracewell R.N. — The Fourier Transform and its applications | 118 (see also Deconvolution) |
Egorov Yu.V. (Ed), Shubin M.A. (Ed) — Partial Differential Equations II: Elements of the Modern Theory. Equations with Constant Coefficients | 108 |
Petrou M., Sevilla P.G. — Image Processing: Dealing with Texture | 391—392 |
Lynch D.R. — Numerical Partial Differential Equations for Environmental Scientists and Engineers: A First Practical Course | 321 |
Stakgold I. — Boundary Value Problems of Mathematical Physics | 18—20, 49 |
Pinsky M.A. — Introduction to Fourier Analysis and Wavelets | 5, 14, 19, 92 |
Vanderlugt A. — Optical signal processing | see also “Appendix II”, 6, 78, 114, 241 |
Mehta M.L. — Random Matrices | 634 |
Antia H.M. — Numerical Methods for Scientists and Engineers | 418, 423, 426, 428, 467, 736 |
Wheeden R.L., Zygmund A. — Measure and integral. An introduction to real analysis | 93, 145 |
Heckbert P.S. — Graphics gems (Vol. 4) | 447 |
Young R.M. — Excursions in Calculus: An Interplay of the Continuous and the Discrete | 164 |
Shore S.N. — The Tapestry of Modern Astrophysics | 163, 732—733 |
Kreyszig E. — Advanced engineering mathematics | 248, 523 |
Seul M., O'Gorman L., Sammon M.J. — Practical algorithms for image analysis. Description, examples, and code | 60, 280 |
Simmons G.F. — Introduction to topology and modern analysis | 304—305 |
Butcher J. — Numerical Methods for Ordinary Differential Equations | 30 |
Hormander L. — The analysis of linear partial differential operators I | 16, 88, 101 |
Ash R.B., Doléans-Dade C.A. — Probability and Measure Theory | 328 |
Bona M. — Combinatorics of permutations | 180 |
Ballard D.H., Brown C.M. — Computer vision | 25, 68 |
Patterson S.J. — An Introduction to the Theory of the Riemann Zeta-Function | 118, 123 |
Neff H.P.Jr. — Introductory electromagnetics | 39, 49 |
Estrada R., Kanwal R.P. — A distributional approach to asymptotics theory and applications | 86 |
Crane R. — A simplified approach to image processing. Classical and modern techniques in C | 67—74, 76 |
Elliot P.D.T.A. — Probabilistic Number Theory Two: Central Limit Theorems | 30, 254, 255 |
Clausen M. — Fast Fourier transforms | 29 |
West B.J., Bologna M., Grigolini P. — Physics of Fractal Operators | 82, 138 |
Goodman J.W. — Statistical Optics | 312, 530 |
Rosenfeld B. — Geometry of Lie Groups | 12 |
Bowman A.W., Azzalini A. — Applied Smoothing Techniques for Data Analysis: The Kernel Approach with S-Plus Illustrations | 25, 32, 37, 38, 40, 108 |
Conway J.B. — A Course in Functional Analysis | 193, 228 |
Haight F.A. — Handbook of the Poisson Distribution | 1 |
Bow S.-T. — Pattern recognition and image preprocessing | 306, 336, 401, 416—419, 587—589 |
Lipson H., Cochran W. — The Determination of Crystal Structures | 155, 266 |
Lemmermeyer F. — Reciprocity Laws: From Euler to Eisenstein | 134 |
Paeth A.W. (ed.) — Graphics gems (volume 5) | IV.447 |
Saxe K. — Beginning functional analysis | 132 |
Roe B.P. — Probability and Statistics in Experimental Physics | 54, 55, 57, 59—61 |
Lang S. — Real and Functional Analysis (Graduate Texts in Mathematics Series #142) | 73, 176, 223, 234, 239 |
Kral J. — Integral Operators in Potential Theory (Lecture Notes in Mathematics) | 66 |
Widder D.V. — The Laplace transform | 84 |
Attouch H., Buttazzo G., Michaille G. — Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization | 18 |
Korevaar J. — Tauberian Theory: A Century of Developments | 80 |
Buser P. — Geometry and spectra of compact riemann surfaces | 259 |
Wilkinson L., Wills G., Rope D. — The Grammar aof Graphics | 412 |
Margenau H., Murphy G.M. — The mathematics of physics and chemistry | 261 |
Larsen R. — Banach algebras: An Introduction | 19—20 |
Kao E. — Introduction to Stochastic Processes | 18, 335 |
Stakgold I. — Boundary value problems of mathematical physics | 18—20, 49 |
Schmidt K. — Dynamical systems of algebraic origin | 27, 111, 165 |
Martin J Buerger — Crystal Structure Analysis | 425 |
Drmota M., Tichy R.F. — Sequences, Discrepancies and Applications | 30, 317 |
Durrett R. — Probability: Theory and Examples | 30 |
Friedlander F.G. — The Wave Equation on a Curved Space-Time | 43 |
Tsang L., Kong J.A., Ding K.- H. — Scattering of electromagnetic waves (Vol 2. Numerical simulations) | 41, 326, 333, 491, 492 |
Rao M.M., Swift R.J. — Probability Theory With Applications | 235 |
Petrov V.V. — Limit theorems of probability theory | 4 |
Graham J., Baldock R. — Image processing and analysis. A practical approach | 77 |
Hyers D.H., Isac G., Rassias T.M. — Stability of functional equations in several variables | 113 |
Demmel J. — Applied numerical linear algebra | 324, 326 |
Blanchard P., Devaney R.L. — Differential Equations | 605, 625 |
Moerdijk I., Reyes G.E. — Models for smooth infinitesimal analysis | 323 |
Simmons G.F. — Differential Equations with Applications and Historical Notes | 408 |
Roads Ñ.(ed.) — Musical signal processing | 157, 168, 170—175, 411, 412 |
Antoulas A.C. — Approximation of Large-Scale Dynamical Systems | 59 |
Jähne B. — Spatio-Temporal Image Processing | 149 |
Rosenblatt M. — Random processes | 20, 39 |
Banks H.T., Buksas M., Lin T. — Electromagnetic Material Interrogation Using Conductive Interfaces and Acoustic Wavefronts | 10, 28 |
Geckeler S. — Optical fiber transmission systems | 48, 57, 69, 78, 278 |
Streater R.F., Wightman A.S. — PCT, spin and statistics and all that | 41 |
Browder A. — Mathematical Analysis: An Introduction | 251 |
Lang S. — Algebra | 85, 116 |
Bracewell R. — The Fourier Transform and Its Applications | 118 (see also Deconvolution) |
Pedrotti L.M. — Introduction to Optics | 522, 533—35 |
Milnor J., Husemoller D. — Symmetric Bilinear Forms | 55 |
Krizek M., Somer L., Luca F. — 17 Lectures on Fermat Numbers: From Number Theory to Geometry | 167, 168, 170 |
Marks R.J.II. — The Joy of Fourier | x, 6, 7, 9, 13, 16, 19, 55, 116-118, 121-126, 177, 179, 187, 196-198, 219, 220, 224, 229, 235, 250, 252, 264, 265, 341-343, 357, 358, 362, 387, 440, 473, 480, 617, 618, 624, 628, 629, 646-648, 659, 661, 680, 737, 761, 763, 764, 769, 773, 774 |
Vilenkin N.Y., Gel'fand I.M. — Generalized Functions. Volume 4. Applications of Harmonic Analysis | 23, 140 |
Folland G.B., Stein E.M. — Hardy Spaces on Homogeneous Groups | 15 |
Peebbles P.Z. — Radar Principles | 719 |
Barnett S.M., Radmore P.M. — Methods in Theoretical Quantum Optics | 23, 116, 252 |
Petrou M., Bosdogianni P. — Image processing: the fundamentals | 7, 72—77, 157 |
Duistermaat J.J, Kolk J.A.C. — Distributions: theory and applications | 7 |
Rauch J. — Partial differential equations | §2.5, 252, 256 |
Accetta J.S. (ed.), Shumaker D.L. (ed.), Rogatto W.D. (ed.) — The Infrared & Electro-Optical Systems Handbook. Volume 3: Electro-Optical Components | 548 |
Yoo T.S. (ed.) — Insight into Images: Principles and Practice for Segmentation, Registration, and Image Analysis | 25, 66, 104 |
Weaver H.J. — Applications of discrete and continous Fourier analysis | 68 |
Franklin G.F., Workman M.L., Powell J.D. — Digital Control of Dynamic Systems | 92 |
Papoulis A. — The Fourier Integral and Its Applications | 26 |
Goswami J., Chan A. — Fundamentals of Wavelets. Theory, Algorithms, and Applications | 24, 39, 147 |
Lukacs E. — Characterisic functions | 45, 47 |
Hildebrand F.B. — Methods of Applied Mathematics | 274 |
Lena P., Lebrun F. — Observational Astrophysics (Astronomy and Astrophysics Library Series) | 425 |
Hartman S., Mikusinski J. — The theory of Lebesgue measure and integration | 160 |
Handelman D.E. — Positive Polynomials, Convex Integral Polytopes, and a Random Walk Problem | 14 |
Humphreys J.E. — Introduction To Lie Algebras And Representation Theory | 135 |
Bouchaud J.-P., Potters M. — Theory of Financial Risks: From Statistical Physics to Risk Management | 21 |
Seneta E. — Non-negative matrices: an introduction to theory and application | 126 |
Triebel H. — Theory of Function Spaces | 28 |
McShane E.J., Botts T.A. — Real Analysis | 200, 201 |
De Finetti B. — Theory of Probability. A critical introductory treatment | 277 |
Gelbaum B.R. — Problems in Real and Complex Analysis | 6.1. 72 |
Xi N. — Representations of Affine Hecke Algebras | 3.1 |
Loomis L.H. — An introduction to abstract harmonic analysis | 120—122 |
Valette A. — Introduction to the Baum-Connes Conjecture | 11 |
Grimmett G., Welsh D. — Probability: An Introduction | 42, 84 |
Adams D.R., Hedberg L.I. — Function spaces and potential theory | 4 |
Carroll R.W. — Mathematical physics | 12 |
Lang S. — Undergraduate analysis | 283, 311, 355 |
Bourgain J. — New Classes of Lp-Spaces | 8, 9 |
Bhatia R. — Fourier Series (Mathematical Association of America Textbooks) | 20, 85 |
Kuttler K.L. — Modern Analysis | 212, 297 |
Stakgold I. — Green's functions and boundary value problems | 104, 163, 363 |
Steiglitz K. — A Digital Signal Processing Primer: With Applications to Digital Audio and Computer Music | 186—187, 221—224 |
Bachman G. — Elements of Abstract Harmonic Analysis | 6, 180 |
Huang N.E., Shen S.S. — The Hilbert-Huang transform and its applications | 35, 87 |
Lauterborn W., Kurz T. — Coherent optics | 53, 96, 151, 165, 176, 177, 289, 291 |
Lauterborn W., Kurz T. — Coherent optics | 53, 96, 151, 165, 176, 177, 289, 291 |
Candel A., Conlon L. — Foliations I | 288 |
Bennett C., Sharpley R.C. — Interpolation of Operators | 155 |
Fukushima E., w. Roeder S.B. — Experimental Pulse NMR: A Nuts and Bolts Approach | 50, 480—481 |
Matt Young — Optics and Lasers: Including Fibers and Optical Waveguides | 7.2.6, 7.3.1, 7.3.2, 7.4.1, 7.4.3, 7.4.5 |
Hobbie R., Roth B. — Intermediate Physics for Medicine and Biology, | 326, 327 |
Cloud M.J., Drachman B.C. — Inequalities: with applications to engineering | 68 |
Helgason S. — Topics in harmonic analysis on homogeneous spaces | 82 |
Schwarzenbach D. — Crystallography | 108, 151 |
Hildebrand F.B. — Advanced Calculus for Applications | 62 |
Sofo A. — Computational Techniques for the Summation of Series | 7, 92, 93, 98, 116, 161 |
Strang G. — Introduction to Applied Mathematics | 294, 301, 303, 324 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of mathematics. Volume III. Analysis | 108, 404n |
Moore F. — Elements of Computer Music | 88, 113, 185, 206, 230, 239, 246, 272, 298, 393, 440 |
Blum E.K., Lototsky S.V. — Mathematics of Physics and Engineering | 268 |
Zeidler E. — Applied Functional Analysis: Applications to Mathematical Physics | 182 |
Lang S. — Linear Algebra | 350 |
Bates Douglas M., Watts Donald G. — Nonlinear Regression Analysis and Its Applications (Wiley Series in Probability and Statistics) | 173 |
Cooper R.B. — Introduction to queueing theory | 28, 198 |
Allen A. — Probability, statistics, and queueing theory with computer science applications | 58 |
Klimyk A.U., Vilenkin N.Ya. — Representation Theory and Noncommutative Harmonic Analysis II: Homogeneous Spaces, Representations and Special Functions | 8, 35 |
Zeidler E. — Oxford User's Guide to Mathematics | 393, 394, 402 |
Arthur Erdélyi — Operational Calculus and Generalized Fuctions | 8, 14f, 24, 27 |
Jahne B., Haubecker H. — Computer vision and applications | 226, 234, 341, 488 |
Rektorys K. — Survey of Applicable Mathematics.Volume 2. | II 580, II 573 |
Vidyasagar M. — Nonlinear systems analysis | 293 |
Mignotte M., Stefanescu D. — Polynomials: An Algorithmic Approach | 165 |
Dineen S. — Complex Analysis of Infinite Dimensional Spaces | 434, 444 |
Margalef-Roig J., Outerelo Dominguez E. — Differential topology | 524, 525 |
Hassani S. — Mathematical Methods: for Students of Physics and Related Fields | 716 |
Miller K.S., Ross B. — An Introduction to the Fractional Calculus and Fractional Differential Equations | 143 |
Koosis P. — Introduction to H_p Spaces | 135 |
Natterer F., Wubbeling F. — Mathematical methods in image reconstruction | 3 |
Bharucha-Reid A.T. — Elements of the Theory of Markov Processes and Their Applications | 10, 441 |
Vaisala J. — Lectures On N-Dimensional Quasiconformal Mappings | 89 |
Gerald C.H. — Electro–optical imaging iystem performance | 66 |
Haus H.A. — Waves and Fields in Optoelectronics | 21, 84 |
D.E. Newland — An Introduction to Random Vibration, Spectral and Wavelet Analysis | 64, 412 |
Rice J.A. — Mathematical statistics and data analysis | 93 |
Mantegna R.N., Stanley H.E. — An introduction to econophysics: correlations and complexity in finance | 15, 23—24 |
Erdelyi A. — Operational Calculus and Generalized Functions | 8, 14f, 24, 27 |
De Barra G — Measure theory and integration | 191 |
Heinonen J. — Lectures on Analysis on Metric Spaces | 17, 37 |
Malyshev V.A., Minlos R.A. — Gibbs Random Fields: Cluster Expansions (Mathematics and its Applications) | 63 |
Akenine-Möller T. — Real-Time Rendering | 89n |
Loan C. — Computational Frameworks for the Fast Fourier Transform (Frontiers in Applied Mathematics) | 205ff |
Kanwal R.P. — Generalized functions: Theory and technique | 169 ff |
Lord E., Wilson C. — The Mathematical Description of Shape and Form (Mathematics and Its Applications) | 214, 247 |
Shirley P., Ashikhmin M, Gleicher M. — Fundamentals of computer graphics | 75, 76, 108, 112 |
Balser W. — Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations | 178 |
Mackey G. — Unitary Group Representations in Physics, Probability and Number Theory | 19 |
Burgisser P., Clausen M., Shokrollahi M.A. — Algebraic complexity theory | 327 |
Horowitz E., Rajasekaran S., Sahui S. — Computer Algorithms | 721, 758 |
Zorich V.A., Cooke R. — Mathematical analysis II | 449—470 |
Cheney W. — Analysis for Applied Mathematics | 269ff, 290ff |
Zorich V. — Mathematical Analysis | 449—470 |
Fuchssteiner B., Lusky W. — Convex Cones (North-Holland Mathematics Studies) | 364 |
Bhatia R. — Matrix Analysis | 146 |
Logan J. — Applied Mathematics: A Contemporary Approach | 189 |
Chui C.K. — Wavelets: a mathematical tool for signal processing | 25, 37 |
Gripenberg G., Londen S.O., Staffans O. — Volterra integral and functional equations | see "$\ast$-product" |
Vretblad A. — Fourier Analysis and Its Applications (Graduate Texts in Mathematics) | 53, 65, 80, 176, 218, 232, 239 |
Bona M. — Combinatorics of Permutations | 180 |