Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Barlow R. — Statistics: A Guide and Reference to the Use of Statistical Methods in the Physical Sciences
Barlow R. — Statistics: A Guide and Reference to the Use of Statistical Methods in the Physical Sciences



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Statistics: A Guide and Reference to the Use of Statistical Methods in the Physical Sciences

Àâòîð: Barlow R.

Àííîòàöèÿ:

An introduction to the techniques of applied statistics. Provides background information on each method covered, focusing on the theory of measurements and errors and the problem of estimation.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1989

Êîëè÷åñòâî ñòðàíèö: 222

Äîáàâëåíà â êàòàëîã: 13.04.2008

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
$\chi^2$      see chi squared
$\gamma$      see skew
$\kappa$      see cumulants
$\rho$      see correlation
$\Sigma$      see standard deviatioi
ACCEPT      141—144
Acceptance region      143—145
Action level      10
Alternative hypothesis      142—145
Analysis of variance (Anova)      164—169
Arithmetic mean      6—7
Asymptotic limit for ML estimators      85—86
Averaging measurements      51—55
Axioms of probability      119
Bar charts      4
Bavesian statistics      121—125 127 130—132
Bayes* theorem      122
Bessel's correction      77—78 80
Between-group variance      165—166
Bias of ML estimators      84—85
Bias, biased      69—73
Binned data      4—7
Binned data, fitting      105—106
Binned data, goodness of fit      152—153
Binning, avoidance of      155
Binomial distribution      24—30
Binomial distribution, approximated by Gaussian      41
Binomial distribution, approximated by Poisson      32
Binomial tests      147
Binormal distribution      42—44
BLOCKS      4
Breit — Wigner distribution      46
Cauchy distribution      11 46
Central confidence interval      127
Central limit theorem      49—51
Central limit theorem, proof      196—198
Central moments      14
Characteristic function      196
Chebyshev polynomials      184
Chi squared      98
Chi squared and contingency tables      169
Chi squared and run test      154
Chi squared distribution      106—108
Chi squared distribution, mean and variance      107
Chi squared distribution, proof      108—109
Chi squared for binned data      105—106
Chi squared in ANOVA      165
Chi squared of straight line fit      100
Chi squared, approximated by Gaussian      152
Chi squared, critical values      151
Chi squared, matrix expression      111
Chi squared, probability      150
Chi squared, test      150—153
Classes      4
CLT      see Central Limit Theorem
Collective      120
Combination of errors      55—60
Combination of errors, matrix form      60
Combining measurements      53
Composite hypothesis      142
Computing      180—186
Concordance      178—179
Conditional probability      121—122
Confidence belt      128
confidence intervals      125—134
Confidence intervals for a constrained quantity      130—132
Confidence intervals for a Poisson distribution      133—134
Confidence intervals for binomial distribution      132—133
Confidence intervals for Gaussian distribution      129—130
Confidence intervals, several variables      134
Confidence level      118 125—134
Confidence level and hypothesis testing      146
Confidence level, descriptive      125—127
Confidence level, estimation      127—134
Confidence regions      134
Consistency of ML estimators      84
Consistency, consistent      69—70 72
Contingency tables      169—170
Continuous data      4
Continuous variables      23 121
Convolution      197
Correlated samples      159—161
Correlation and errors      58—60
Correlation and the binormal      43 44
Correlation for ranked data      177
Correlation in straight line fit      100—102
Correlation matrix      18 59
Correlation of data      15—18
Correlation, estimation of coefficient      80
Correlation, Pearson's      177
Correlation, Spearman's      177
Covariance and errors      58—60
Covariance in straight line fit      100—102
Covariance matrix      18 59
Covariance matrix and chi squared      150
Covariance matrix and systematic errors      65
Covariance of data      15—18
Covariance of moments      78
Cramer — Rao inequality      75
Critical values, for Student's t      137
Cumulants      198
Curtosis      13
Deciles      13
Degree of belief      123—124
Degrees of freedom and chi squared distribution      107—108
Degrees of freedom and Student's t      135—136
Degrees of freedom in chi squared test      151 -152
Degrees of freedom in contingency tables      170
Degrees of freedom in the F distribution      160—164
Descriptive statistics      3
Directional test      142
Discrete data      4
dispersion      8
Distribution free tests      173
Efficiency, efficient      69—73
Ensemble      120
Equally-likely cases      121 124
Error      48—66
Error matrix      18 59—60
Error, estimating      79 107
Error, systematic      61—66 80
Error, type I      142
Error, type II      142
Errors on ML estimators      86 87
Estimate, estimation, estimator      68—95
Estimation of a half-life      82
Estimation of the correlation coefficient      80
Estimation of the error      79 107
Estimation of the mean      76 83
Estimation of the standard deviation      11 78 83
Estimation of the variance      76
Events      3
expectation value      22—24
Expectation value and estimation      70—74
Expectation value in the asymptotic limit      85
Extended maximum likelihood      90—91
Extrapolation      103
F distribution      160—164
Factors (in ANOVA)      167
Failure      24 25
Fisher distribution      160—164
Fitting curves      184
Fourier transform      197
Frechet inequality      75
Ftest, and concordance      178
Full width at half maximum, FWHM      13
Gaussian and the CLT      49—51
Gaussian approximation to binomial      41
Gaussian approximation to chi squared      107 152
Gaussian approximation to the F distribution      161
Gaussian distribution      34—41
Gaussian distribution, and Student's t      134—136
Gaussian limit of likelihood function      85
Gaussian, cumulants      198
Gaussian, definite integrals      36—37
Gaussian, estimating the mean      73 76 83
Gaussian, estimating the standard deviation      79 83
Gaussian, integrated      37
Gaussian, many dimensional      41 42
Gaussian, one-tailed integral      39
Gaussian, probability content      37
Gaussian, two samples      156—161
Gaussian, two-tailed integral      38
Geometric mean      7
Goodness of fit      141 149—156
groups      4
Half-life, estimation of      82
Harmonic mean      7
Histograms      4
Histograms, goodness of fit      152—153
Hypothesis      141
Hypothesis testing      141—171
Hypothesis, alternative      142—145
Hypothesis, composite      142
Hypothesis, null      146
Hypothesis, simple      142
Ignorance      125
Inconsistent      see consistent
Independent      23
Inefficient      see efficient
information      75
Interpretation of experiments      141 145—147
Interquartile range      12
Invariance of ML estimators      84 87
Kolmogorov test      155—156
Kolmogorov test and the two-sample problem      164
Kolmogorov test for ranked data      174
Kolmogorov, probability axioms      119 188
kurtosis      14
Latin square      169
Law of Large Numbers      21—23
Least squares estimation      68 97—107
Least squares, derived from maximum likelihood      93
Least squares, fitting a parabola      114—115
Least squares, fitting a straight line      99—105
Least squares, fitting polynomials      114—115
Least squares, several variables (linear)      111—115
Least squares, several variables (non-linear)      115—116
Least squares, using matrices      111—116
Likelihood function      71—73 81—90 111
Linear least squares      111—115
Linearity      112
Loss of precision      180—184
Lower limit      127—129 132—134
Lower quartile      12
Mann — Whitney test      174
Many-dimensional Gaussian      41 42
Matched pairs, for ranked data      175—177
Matched samples      159—161
Matrix inversion      183
Maximum Likelihood Estimation      81—90
Maximum likelihood estimation, asymptotic limit      85—86 89
Maximum likelihood estimation, confidence intervals      134
Maximum likelihood estimation, efficiency      86
Maximum likelihood estimation, errors      86
Maximum likelihood estimation, several variables      88
Mean      6—9
Mean absolute deviation      12
Mean deviation      12
Mean for binomial      26
Mean for chi squared distribution      107
Mean for Gaussian      35
Mean for Poisson      30
Mean of a sum of variables      49 50
Mean, estimation of      76 83
Median      7
Median, sign test for      173
Method of moments      92
Minimum variance bound      73—75
ML      see maximum likelihood
MODE      7
Moments      14 92
Monte Carlo      185
Multi-dimensional Gaussian      41 42
Multiway analysis of variance      166—169
MVB (Minimum Variance Bound)      73—75
Neyman Pearson test      144—145
Non-directional test      142
Non-linear least squares      115—116
Non-numeric data      3
Non-parametric methods      173
Non-uniform bins      4
Normal distribution      see Gaussian distribution
Normal equations      111—112
Null hvpothesis      146—149
Null hvpothesis in ANOVA      165
Null hvpothesis in Mann — Whitney test      174
numeric data      3
Numerical methods      180—185
One-tailed probability      40
One-tailed test      142
Parabola fit      114—115
Parent distribution      11
Parent population      69
Pearson's correlation      177
Pearson's skew      14
Peirce, C.S.      120
Percentage errors      58
Percentiles      13
Poisson approximated by Gaussian      40
Poisson approximation of binomial      32
Poisson distribution      28—33
Poisson tests      148
Polynomials      92 114
Polynomials, Chebyshev      184
Pooled estimate of standard deviation      158 165
Popper, K.      121 188
Power      143—144
Precision, loss of      180—184
probability      118—125
Probability as limit of a frequency      119—120 124 128
probability density      23 24
probability distribution      21
Probability, Bayesian      121—125
Probability, conditional      121—122
Probability, empirical      119—120
Probability, mathematical      119
Probability, objective      120—121 124
Probability, subjective      121—125
Programming      185
Propagation of errors      see combination of errors
Propensity      120—121 124
Quadratic equations, and significance errors      183
Quadrature      57
Qualitative data      3—4
Quantitative data      3—4
Random errors      61 64
Random number distribution, arbitrary function      184
Random number distribution, exponential      184
Random number distribution, Gaussian      51
Random number distribution, weighted rejection      184
Random numbers      184
RANGE      12
Rank      7 172—179
Rank sum test      174
Regression      104—105
Rejecting a hypothesis      141—144
Rejecting measurements      54—55
Rejection region      143—145
Repeated measurements      51—52 76
1 2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå