Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Sornette D. — Critical phenomena in natural sciences
Sornette D. — Critical phenomena in natural sciences



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Critical phenomena in natural sciences

Автор: Sornette D.

Аннотация:

Concepts, methods and techniques of statistical physics in the study of correlated, as well as uncorrelated, phenomena are being applied ever increasingly in the natural sciences, biology and economics in an attempt to understand and model the large variability and risks of phenomena. The emphasis of the book is on a clear understanding of concepts and methods, while it also provides the tools that can be of immediate use in applications. The second edition is a significant expansion over the first one which meanwhile has become a standard reference in complex-system research and teaching. For example, probability concepts are presented more in-depth and the sections on Levy laws and the mechanisms for power laws have been greatly enlarged. Also, considerable material has been added to the chapter on renormalization-group ideas. Further improvements can be found in the applications to earthquake or rupture models. Although this book evolved out of a course for graduate students, it will be of great interest to researchers and engineers, as well as to post-docs in physics, ecophysics, geophysics and meteorology.


Язык: en

Рубрика: Физика/Термодинамика, статистическая физика/Фазовые переходы/

Статус предметного указателя: Готов указатель без номеров страниц

ed2k: ed2k stats

Год издания: 2000

Количество страниц: 434

Добавлена в каталог: 02.10.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
$\Pi$ theorem
1/f noise
Abelian sandpile model      
Advection of passive scalars
Aftershocks      
Aging
Anomalous diffusion
Anti-ferromagnetic      
ARCH: auto-regressive conditional heteroskedasticity      
Arrhenius activation law      
Asthenosphere      
Autoregressive process      
Avalanches      
Average      
Bak — Sneppen model      
Barkhausen noise      
Bayeian      
Bethe lattice      
Bifurcation
Binomial law      
Boltzmann formalism      
Boltzmann function      
Branching
Breaking of ergodicity
Brownian motion
Burgers/adhesion model
Burning method
Burridge — Knopoff model
canonical ensemble      
Cantor set
Cascade      
Catastrophe theory      
Cauchy distribution      
Cavity approach
Central charge      
Central limit theorem
Chaoticity      
Characteristic function      
Characteristic scale      
Charge-Density-Wave      
Cloud      
Clusters      
Coast of Britain
Collective phenomena      
Complex exponents      
Complex fractal dimension      
Conditional probability      
Conformal field theory      
Conformal transformation      
Contact processes      
Control parameter      
Convolution
Correlation
Correlation function
correlation length
Coulomb solid friction law      
Cracks      
Cramer      
Cramer function      
Craters      
Crisis      
critical exponent      
Critical phenomena      
Critical point
Cumulants
Damage
Decimation
Density of states
Dependence      
Depinning
Deviation theorem      
Dice game      
Dieterich friction law      
Diffusion      
Diffusion Limited Aggregation      
Diffusion-reactions      
Dimensional analysis      
Directed percolation      
Discrete scale invariance      
Dissipation function      
DNA      
Droplets
Earthquake      
Effective medium theory
Ehrenfest classification      
entropy      
Epicenters      
Epidemics      
Error function      
Exceedance
Exponential distribution
Extended self-similarity      
Extreme deviations      
Extreme value theory
Faults
Feedback
Fermi, Pasta and Ulam
Fiber bundle models
Fick's law
Financial crash      
First order transition      
First-order phase transition      
Fixed point
Flinn — Planck equation
Forest fires
Fractal dimension
Fractal growth phenomena
Fractals
Fractional derivative
Fractional integral
Fracture
Fragmentation      
Frechet distribution      
Fredholm integral equation      
Free energy
Frustration
Gamma law
gap equation
Gauss distribution
Gaussian law
Generic scale invariance
Gibbs — Duhem relation
Glass transition
Global warming
Goldstone modes
grand canonical ensemble      
Gravity altimetry      
Green function      
Gumbel distribution      
Gutenberg — Richter      
Harvard catalog
Hausdorff dimension
Hermite polynomials
Hierarchical network      
Hill estimator
Holtsmark's gravitational force distribution
Homogenization theory
Hurricane      
Hyperbolic dynamical system      
Hysteresis
I.i.d.
Imitation
Infinitely divisible cascades
Infinitely divisible distributions      
Instanton
Interacting particles      
Internet      
Ising model      
Iterated Function Systems      
Ito interpretation      
Jaynes analysis      
Jeffreys theory      
Kesten multiplicative process      
Koch curve      
Kramers' problem      
Kullback distance      
Lagrange multipliers      
Lambda point      
Landau — Ginzburg theory
Langevin equation      
Laplace transform      
Large deviations      
Ledrappier — Young      
Legendre transform      
Levy law      
Levy walk      
Likelihood      
Lithosphere      
localization      
Log-normal      
Log-periodicity      
Macrostate      
magnetization
Master equation      
Maximum value      
Maximum-likelihood
Maxwell construction rule      
Mean      
Mean field theory      
Median      
Mellin transform
microcanonical ensemble      
Microstates
Minimal paths
Moments
Most probable value      
Multifractals
Multiplication
Noether theorem
Noise      
Normal form
Nucleation
Olami — Feder — Christensen model
Optimization principle
Order parameter
Ornstein — Uhlenbeck process
Parapsychology
Partition function
Parturition
Percolation
Perturbation analysis      
Phase space      
Phase transition
Poisson distribution
Poisson equation
Poisson summation formula
Potts model
Power law      
Power law distribution      
Prediction
Principle of least action
probability
Quantile
Quenched randomness
Random directed polymer
Random energy model      
Random field
Random multiplicative models
Random walk
Rank ordering
Rayleigh number
Rayleigh — Bernard
Real-space renormalization group
Renormalization group
Renormalization group equation
Replica symmetry breaking
Return to the origin
Risk
River networks
Ruler methods
Rupture      
Saddle node method
Saddle-node method      
Sandpile models
Scale invariance      
Scaling
Self-affinity
Self-averaging
Self-organization
Self-organized criticality      
Self-similarity      
Shannon information      
Shock      
Singularity      
Sliding
Social imitation
Solid friction
Spanning trees
Spin models
Spinodal
Spinodal decomposition
SPREAD
St. Petersburg paradox
Stable laws
Standart deviation
Statistical mechanics
Stick-slip
Stochastic equation
Stochastic partial differential equation      
Stratonovich interpretation
Stress corrosion      
Stretched exponentials      
Structure factor      
Student's distribution
Subcritical
Super-diffusion      
Supercritical      
Surface growth processes
susceptibility
Synchronization      
Temperature
Thermal fuse model
Thermodynamic limit
Thermodynamics      
Tides      
Time-reversal symmetry
Time-to-failure
Topography      
Trapping times      
Tri-criticality      
Tsallis generalized entropy      
Turbulence      
Universality      
Variance      
Vortices      
Wavelets      
Weibull distribution      
Weierstrass function
Wiener process
Wiener — Hopf integral equation
Wolf's die
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте