Авторизация
Поиск по указателям
Attouch H., Buttazzo G., Michaille G. — Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization
Авторы: Attouch H., Buttazzo G., Michaille G.
Аннотация: For graduate students and researchers, Attouch (mathematics, U. Montpellier II, France) et al. present a guide to variational analysis, optimization, and partial differential equations (PDEs). After discussing the basics, the authors chart new areas of research on BV spaces. Topics include weak solution methods, abstract variational principles, complements on measure theory, Sobolev spaces, examples of classical variational problems, the finite element method, spectral analysis of the Laplacian, convex duality and optimization, relaxation, integral functionals, application in mechanics and computer vision, and shape optimization problems.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 2006
Количество страниц: 634
Добавлена в каталог: 02.02.2010
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
425
390
390
371
383
212
-diffeomorphism 174
25
61
129
133
138
16
129
16
432
121
, f#g 313
167
152
154
185
563
125
139
124
124
421
124
409
409
394
, 404
167
153
421
154
101
390
7
-convergence 464
465
465
124
16
17
181
112
114
138
135
124
, 125
138
331
389
397
132
309
180
Absolutely continuous 125
Approximate, derivative 408
Approximate, limit 389
Approximate, limit inf 390
Approximate, limit sup 390
Cantor part 407
Cantor set 122
Cantor — Vitali function 408 518
Caratheodory criterion 112
Cauchy — Riemann 9
Coercive 76
Coercive, -coercive 589
Coercivity 86
Complementary problem 340
Complementary slackness condition 345 356
Concentration 50
Convolution 18
Courant — Fisher 290 291 294
Covering, fine 115
De La Vallee-Poussin criterion 518 519
Density point 388
diam(E) 109
Dirac mass 15 27
Dirichlet 598
Dirichlet, problem 31
distribution 17
Distribution, derivation 24
div 9
dom f 77
Domain 77
Dual function 354 358 361
Dual problem 351 354
Dual value 354
Duality, gap 354 358
Dunford — Pettis theorem 145
Eberlein — Smulian theorem 56
Eigenvalue 279—281
Eigenvector 280 281 286 288 290
Ekeland's -variational principle 98
epi f 79
Epi-sum 312 328
Epiconvergence 466
Ergodic theorem 49
Ergodic, dynamical system 534
Ergodic, subadditive ergodic theorem 534
Exact minorant 331 333
Extension, operator 174
Extension, theorem 179
F* 321
Fenchel, extremality relation 332 364
Fenchel, extremality relations 335
Fenchel, Fenchel — Moreau theorem 321
Fenchel, Legendre — Fenchel, conjugate 320
Fenchel, Legendre — Fenchel, transform 597
Finite perimeter (set of) 396
Galerkin approximating method 257
Galerkin method 73
Gateaux differentiability 98
Gauss 8
Gauss — Green formula 396 401
Generalized solution 420
Hahn — Banach separation theorem 92
Hahn — Banach theorem 307 454
Harmonic function 7
Hat function 261 262
Hausdorff, dimension 120
Hausdorff, measure 109 112
Hausdorff, outer measure 109
hilbert 13
Infcompact function 86
Inner measure-theoretic normal 395
Interpolant 265
Ju, Cu 407
Jump, part 407
Jump, point 394
Jump, set 394 404
Karush — Kuhn — Tucker optimality conditions 341 345
Kernel 10
Lagrange, multiplier vector 346
Lagrange, multiplier vector, characterization of 346
Lagrangian 353
Laplace 8
Lax — Milgram Theorem 67
Lebesgue — Nikodym 592
Legendre — Fenchel, conjugate 361
Limit, analysis 597
Lower semicontinuous regularization 85
Marginal function 348 363
Markov inequality 143
Measure theoretical, boundary 389
Measure theoretical, exterior 388
Measure theoretical, interior 388
Measure, Borel 124
Measure, bounded 125
Measure, counting 593
Measure, Radon 115 125
Measure, regular 61 125
Measure, signed 124
Measure, support 124
Measure, total variation 125
Mollifier 18
Mountain Pass Theorem 100
Narrow 374
Narrow convergence, of Young measures 138
Neumann 598
Neumann, boundary condition 34
Neumann, problem 33
Newtonian potential 7 28
nodes 261 262
Normal cone 338
Optimal value 355
oscillations 49
Palais — Smale compactness condition 99
Perturbation function 360 361 363 365
Picard iterative method 71
Poincare inequality 168
Poincare — Wirtinger inequality 180 400
Poisson equation 8
Primal, problem 353
Primal, value 353
Proper 77
Qf 423
Quasi-continuous representatives 340
Quasi-convex envelope 423 458
Rademacher 379
Radon measure 24
Radon — Nikodym theorem 126
Rarefaction point 388
Rayleigh, Courant — Rayleigh formula 298
Rayleigh, quotient 290
Recession, cone 563
Recession, function 440 478 510 524 592
Recession, functional 555
Reduce boundary 397
Reflexive 55
Regular point 393
Regular, triangulation 264
Relaxation 437
Relaxation scheme 457
Relaxed problem 85 420
Rellich — Kondrakov compact embedding theorem 179
Rellich — Kondrakov Theorem 172
Riemann 9
Riesz, representation theorem 20 48 61 67 129
Riesz, theorem 41 86
Rockafellar theorem 329
Saddle point 354 355
Saddle value problems 354
Self-similar set 123
Separation of variable method 279 305
Set convergence 464
Set of class 174
singular 125
Slater qualification assumption 341 343 344 348 350 351 355 363
Slater, generalized Slater 363
Slicing decomposition 135
Sobolev spaces 24
spt 16 124
Stokes problem 35
Subadditive 593
Subadditivity 110 592
Subdifferential 331
Support function 309
Tangent cone 338
Test function 31
Test functions 15
Tightness, for nonnegative Borel measures 133
Tightness, for Young measure 139
Uniformly convex 52 55
Uniformly integrable 58 144 145 148 450 451 460
Value function 363
Vitali's covering theorem 115
von Neumann's Minimax Theorem 360
Weak* topology 60
Weak, convergence 41
Weak, solution 31
Weak, topology 41 44
Weierstrass, example 12
Weierstrass, theorem 87
Young measure 138
Young measures, -Young measures 450
Young measures, associated with functions 142
Young measures, generated by functions 143
Реклама