| 
		        
			        |  |  
			        |  |  
					| Авторизация |  
					|  |  
			        |  |  
			        | Поиск по указателям |  
			        | 
 |  
			        |  |  
			        |  |  
			        |  |  
                    |  |  
			        |  |  
			        |  |  |  | 
		|  |  
                    | Meyn S.P., Tweedie R.L. — Markov Chains and Stochastic Stability |  
                    |  |  
			        |  |  
                    | Предметный указатель |  
                    | |  , indicator function of B      68 
  , Kronecker product      404 
  , uniformly accessibility      91 
  , uniformly accessibility using a      120 
  , points from which A is inaccessible      91 
  , states reachable from x at time k by CM(F)      150 
  , states reachable from x by CM(F)      150 
  , ladder chain transition probabilities      77 
  313 
  , infinitely differentiable lunctions      29 
  , controllability matrix      96 
  , sublevel set of V      190 
  , generalized controllability matrix      155 
  , period of  114 
  , output maps for LCM      30 
 ![$G_C^{(r)}(x,B)=E_x[\sum_{k=0}^{\sigma_C}1_B(\Phi_k)r^k]$](/math_tex/0f44b8aff7c145ceafe4fe95b08d192d82.gif) 367 
  , almost everywhere invariant function      412 
  72 
  129 
  119 
  , resolvent kernel      68 
  70 
  , martingale derived from g      434 
  , interpolation of  435 
  , customers in q. before  arrival      46 
  , customers in q. after  service time      48 
  , control set      152 156 
  , supports disturbance/control in CM(F) or NSS(F) models      32 
  , n-step transition probability      59 67 
  , Kernel for process on h      292 
  , probability conditional on  16 
  200 
  , residual service time      77 
  , sum of  between visits to atom      417 
  , partial sum of  410 
  , interpolation of  435 
  313 
  , coupling time      317 
  313 
  43 
  178 
  70 
  178 
  73 
 ![$U_C^{(r)}(x,B)=E_x[\sum_{k=1}^{\tau_C}1_B(\Phi_k)r^k]$](/math_tex/b141dcd4fdd178f5b955d5f7ef787ff982.gif) 364 
  , resolvent kernel      290 
 ![$U_{\alpha}^{(r)}(x,f)=E_x[\sum_{n=1}^{\tau_{\alpha}}f(\Phi_n)r^n]$](/math_tex/c7dbd3b15c4441842d72ae276f33978f82.gif) 357 
  , forward recurrence time chain      44 
  , forward recurrence time process      75 
  , backward recurrence process      75 
  , minimal solution to (V2)      266 
  , forward recurrence  -skeleton      75 
  , backward recurrence  -skeleton      75 
  , increment process      24 
  , atom      100 
  , convolution operator      74 
  , points from which A is accessible      91 
  , points reaching A in m steps      91 
  , Cesaro average of  285 
  , the split transition lunction      103 
  , the atom in  104 
  , the split chain      103 
  , split invariant measure      240 
  , drift operator      174 
  , derivative process      166 
  , Dirac measure      67 
  70 
  , distribution of disturbance variable      24 
  , limiting variance in the CLT      411 
  , solution to the Poisson equation      431 
  , split measure on  103 
  , zero-level l. c. transition probabilities      77 
  , communicates with      82 
  , complex plane      140 
  , real line      516 
  , n-dimensional Euclidean space      6 
  , integers      61 
  , non-negative integers      3 
  ,  -field of subsets ol X      55 
  , Borel  -field on  516 
  , sets with  89 
  , continuous bounded lunctions on X      128 520 
  , continuous lunctions vanishing at  523 
  , continuous lunctions with compact support      143 
  69 
  72 
  , distributions with Laplace — Stieltjes transform convergent in ![$[0,\gamma]$](/math_tex/0cb1bbf2f52cc776046a3683840febe482.gif) 389 
  , space ol Borel probability measures      19 
  , norm on  145 
  385 
  , Lebesgue measure on  93 516 
  , Weak convergence      143 
  , sequence space      55 
  , omega limit set for NSS(F)      157 
  Markov chain      3 66 
  , the m-skeleton chain      68 
  , sampled chain with transition kernel  119 
  , Markov chain value at time n      3 
  , invariant measure      229 
  , invariant random variable      414 
  , maximal irreducibility measure      88 
  , maximum eigenvalue modulus      140 
  , leads to      82 
  -field      515 
  -field generated by r.v.      518 
  -finite measure      516 
  ,  hitting time on A      417 
  , hitting time on A      70 
  ,  -field of  -invariant events      412 
  , absolute continuity      80 
  ,  return time on A      70 
  , return time to A      16 70 
  , disturbance, noise, innovation process      24 
  , discrete time renewal process      43 
  ,  order shift operator on  69 
  , irreducibility measure      87 
  -irreducibity      87 
  , total variation norm      311 
  , f-norm      330 
  382 
  73 Absolute continuity      80
 Absorbing set      89
 Absorbing set, maximal a.s.      204
 Accessible atom      100
 Accessible set      91
 Adaptive control      38
 Adaptive control model, boundedness in probability      303
 Adaptive control model, irreducibility      165
 Adaptive control model, performance      406
 Adaptive control model, simple      39
 Adaptive control model, V-Uniform ergodicity      406
 Age process      44
 Antibody model      471
 Aperiodic Ergodic Theorem      309
 Aperiodicity      116 118
 Aperiodicity, strong a.      116
 Aperiodicity, topological a. for states      447
 ARMA model      27 28
 Ascoli’s Theorem      520
 Assumptions for models, (AR1)      27
 Assumptions for models, (AR2)      27
 Assumptions for models, (ARMA1)      28
 Assumptions for models, (ARMA2)      28
 Assumptions for models, (CM1)      33
 Assumptions for models, (CM2)      151
 Assumptions for models, (CM3)      156
 Assumptions for models, (CSM1)      52
 Assumptions for models, (CSM2)      52
 Assumptions for models, (DBL1)      36
 
 | Assumptions for models, (DBL2)      36 Assumptions for models, (DS1)      260
 Assumptions for models, (DS2)      260
 Assumptions for models, (LCM1)      9
 Assumptions for models, (LCM2)      9
 Assumptions for models, (LCM3)      95
 Assumptions for models, (LSS1)      9
 Assumptions for models, (LSS2)      9
 Assumptions for models, (LSS3)      97
 Assumptions for models, (LSS4)      139
 Assumptions for models, (LSS5)      140
 Assumptions for models, (NARMA1)      33
 Assumptions for models, (NARMA2)      33
 Assumptions for models, (NSS1)      32
 Assumptions for models, (NSS2)      32
 Assumptions for models, (NSS3)      156
 Assumptions for models, (Q1)      45
 Assumptions for models, (Q2)      45
 Assumptions for models, (Q3)      45
 Assumptions for models, (Q4)      47
 Assumptions for models, (Q5)      48
 Assumptions for models, (RCA1)      404
 Assumptions for models, (RCA2)      404
 Assumptions for models, (RCA3)      404
 Assumptions for models, (RT1)      44
 Assumptions for models, (RT2)      44
 Assumptions for models, (RT3)      75
 Assumptions for models, (RT4)      75
 Assumptions for models, (RW1)      11
 Assumptions for models, (RW2)      111
 Assumptions for models, (RWHL1)      14
 Assumptions for models, (SAC1)      39
 Assumptions for models, (SAC2)      39
 Assumptions for models, (SAC3)      39
 Assumptions for models, (SBL1)      30
 Assumptions for models, (SBL2)      154
 Assumptions for models, (SETAR1)      31
 Assumptions for models, (SETAR2)      142
 Assumptions for models, (SETAR3)      223
 Assumptions for models, (SLM1)      25
 Assumptions for models, (SLM2)      25
 Assumptions for models, (SNSS1)      29
 Assumptions for models, (SNSS2)      29
 Assumptions for models, (SNSS3)      152
 Assumptions for models, (SSM1)      49
 Assumptions for models, (SSM2)      49
 Assumptions for models, (V1)      190
 Assumptions for models, (V2)      262
 Assumptions for models, (V3)      337
 Assumptions for models, (V4)      367
 atom      100
 Atom, Ergodic      314
 Atom, f-Kendall a.      360
 Atom, Geo. ergodic a.      357
 Autoregression      27
 Autoregression, dependent parameter random coeff. a.      36
 Autoregression, random coefficient a.      404
 Backward recurrence time
  -skeleton      75 Backward recurrence time chain      44 60
 Backward recurrence time process      75
 Balayage operator      305
 Bilinear model      30
 Bilinear model, dependent parameter b.m.      36
 Bilinear model, f-regularity and ergodicity for b.m.      347
 Bilinear model, Geo. ergodicity for b.m.      380 403
 Bilinear model, irreducible T-chains as b.m.      155
 Bilinear model, multidimensional b.m.      403
 Blackwell Renewal Theorem      348
 Borel
  -field      516 519 Bounded in probability      145 301
 Bounded in probability for T-chains      455
 Bounded in probability on average      285
 Brownian motion      525
 Causality in control      38
 Central limit theorem      411
 Central Limit Theorem for Martingales      525
 Central Limit Theorem, CLT for Autoregressions      442
 Central Limit Theorem, CLT for Random walks      442
 Central Limit Theorem, functional CLT      431 435
 Chapman — Kolmogorov equations      67 68
 Chapman — Kolmogorov equations, generalized C-K.e.      120
 Closed sets      519
 Closure of sets      519
 Communication of discrete states      82
 Compact set      519
 Comparison theorem      337
 Comparison Theorem, geometric C.T.      368
 Conditional expectation      518
 Continuous function      520
 Control set      30 32 152 156
 Controllability grammian      98
 Controllability matrix      155
 Controllable      16 95
 Converges to infinity      201 207
 Convolution      43 74 520
 Countably generated
  -field      516 Coupling      316
 Coupling time      317
 Coupling to bound sums      325
 Coupling, null chains      448
 Coupling, renewal processes      316
 Cruise control      3
 Cyclic classes      115
 Cyclic classes for control models      161
 Cyclic classes, content-dependent release rules      50
 Dams      48
 Dense sets      519
 Dependent parameter bilinear model      35
 Dependent parameter bilinear model, Geo. ergodicity for the d.p.b.m.      479
 Derivative process      166
 Dirac probability measure      67
 Disturbance      24
 Doeblin’s condition      391 407
 Dominated Convergence Theorem      518
 Drift criteria      174 496 501
 Drift criteria for deterministic models      259
 Drift criteria for f-moments      331 337
 Drift criteria for geometric ergodicity      367
 Drift criteria for invariant measures      296
 Drift criteria for non-evanescence      215
 Drift criteria for non-positivity      276 499
 Drift criteria for positivity (Foster’s criterion)      262 499
 Drift criteria for positivity for e-chains      298
 Drift criteria for recurrence      190
 Drift criteria for recurrence, converse for Feller chains      215
 Drift criteria for transience      189 276
 Drift criteria, history dependent      474
 Drift criteria, mixed      481
 Drift criteria, state dependent      466
 Drift operator      174
 Dynamical system      19 28
 Dynkin’s formula      263
 e-chain      144
 e-chain, aperiodicity for      458
 Eigenvalue condition      140
 Embedded Markov chains      7
 Equicontinuous functions      520
 Equicontinuous Markov chains (e-chains)      144
 Ergodic atom      314
 Ergodicity      312 500
 Ergodicity for e-chains      459
 Ergodicity for null chains      446
 Ergodicity, f-e.      331
 Ergodicity, f-geometric      355 374
 Ergodicity, f-norm      330
 Ergodicity, history of      329
 Ergodicity, strong      407
 Ergodicity, uniform      383 390
 Ergodicity, V-uniform      382
 Error      24
 
 | 
 |  |  |  | Реклама |  |  |  |  |  |