Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Stakgold I. — Boundary value problems of mathematical physics
Stakgold I. — Boundary value problems of mathematical physics



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Boundary value problems of mathematical physics

Àâòîð: Stakgold I.

Àííîòàöèÿ:

For more than 30 years, this two-volume set has helped prepare graduate students to use PDEs and integral equations to handle significant problems arising in applied mathematics, engineering, and the physical sciences. Contains many concrete examples of boundary value problems for PDEs that still cover a variety of modern applications


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1987

Êîëè÷åñòâî ñòðàíèö: 748

Äîáàâëåíà â êàòàëîã: 23.10.2010

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Addition theorem for cylindrical waves      268
Addition theorem for Legendre functions      398
Addition theorem for spherical waves      290
Adjoint      9 198
Admissible functions      332
Approximation in subspace      335—336
Aronszajn, N.      382
Asymptotic expansions for heat equation      206 222 236
Asymptotic expansions of eigenvalues of Laplacian      231—234 239—240
Asymptotic expansions of integrals      399—402
Base operators      382
Bazley, N.W.      382
Bessel equation      242 268—270 295
Biharmonic equation      40 105 365
Boundary conditions, essential      353
Boundary conditions, natural      352—355
Boundary value problem      88
Boundary value problem, well-posed      89
Capacity      171—174 350—352
Cauchy data      74
Cauchy problem      73
Causal function      see "Right-sided function"
Causal fundamental solution      see "Fundamental solution"
Characteristic      74
Characteristic of wave equation      46
Characteristic, surface      74
Classification of partial differential equations      73—87
Comparison theorem      377
Composite medium      183 234—293
Conductor      171—183
Consistency condition      171
continuous dependence on data      89 91 95 102—103 226
Convolution      18—20 49
Cylindrical wave      267—268
d'Alembert's formula      85
Damped wave equation      65—69 257—259 264
Delta function      5 20 27 34
Descent, method of      255
Diaz, J.      344
Difference kernel      311
Diffraction      see "Scattering"
Diffusion      230 240—241 329 see
Dipole      6 111 201
Dipole layer      12 113
Dirichlet problem      90—103 122—125 135 142 172 296 348
Dissipative wave equation      see "Damped wave equation"
Distributions of slow growth      31 37
Distributions, action of      4
Distributions, convergence of      10—16
Distributions, convolution of      18
Distributions, definition of      4 31 37
Distributions, differentiation of      7
Distributions, dipole      6 8
Distributions, Dirac      5
Distributions, direct product of      17
Distributions, partial differential equations for      39
Distributions, product of functions and      7
Distributions, regular      5
Distributions, singular      5
Distributions, translation of      5
Distributions, values of      9
Divergence theorem      89
Eigenfunction expansion for heat-conduction equation      213—218
Eigenfunction expansion for Laplace's equation      153—164
Eigenfunction expansion for wave equation      248 252
Eigenvalues of negative Laplacian      136—142
Eigenvalues, asymptotic distribution of      231 239—240
Eigenvalues, comparison theorem for      377
Eigenvalues, extremal principles for      369—392
Eigenvalues, lower bounds to      381—392
Elliptic equations      80
Energy flux      262 303
Energy inner product      342
Energy integral for heat conduction      225
Energy integral for wave equation      244 261—262
Energy norm      343
Entire functions      315
Extremal principles for capacity      350—352
Extremal principles for eigenvalues in Hilbert space      372—392
Extremal principles for eigenvalues in n space      369—372
Extremal principles for functional      337—340 352—355 358—361
Extremal principles for torsional rigidity      346—348
Extremal principles, complementary      344—352
Fluid flow      185—190
Fokker — Planck equation      230
Fourier integral theorem      23
Fourier transforms and Wiener — Hopf equations      311—331
Fourier transforms of distributions      30—39
Fourier transforms of functions      23
Fourier transforms of test function      31
Fox, D.W.      382
Free boundary      237
Friedrichs, K.O.      344
Functionals      3 332
Functionals, continuity of      3
Fundamental solution      48
Fundamental solution of damped wave equation      65—69
Fundamental solution of heat-conduction equation      58—60 198
Fundamental solution of Helmholtz's equation      53—58 266—267
Fundamental solution of Laplace's equation      49—53
Fundamental solution of wave equation      61—65 249 253—256
Fundamental solution on Riemann surface      270—272
Fundamental solution, pole of      48
Generalized functions      see "Distributions"
Generalized solution      42
Green's function      see also "Fundamental solution"
Green's function for heat conduction      198 204 209—218
Green's function for Helmholtz's equation      265—290
Green's function for Laplace's equation      130—171
Green's function for wave equation      246—252
Green's theorem      40 89
Hadamard, J.      255
Hankel functions      see "Bessel equation"
Hankel transform      275—280
Harmonic functions, maximum principle for      101
Harmonic functions, mean value theorem for      99
Heat-conduction equation      81 194—243 280—281
Heat-conduction equation in composite medium      234—237
Heat-conduction equation, backward      229
Heat-conduction equation, causal fundamental solution      58—60
Heat-conduction equation, causal Green's function for      197—222
Heat-conduction equation, energy integral for      223
Heat-conduction equation, Green's theorem for      41 196
Heat-conduction equation, ill-posed problems for      229
Heat-conduction equation, maximum principle for      224—225
Heat-conduction equation, Stefan problem for      237—238
Heat-conduction equation, uniqueness for      225—226
Helmholtz's equation in exterior domain      294—311
Helmholtz's equation in wedge      272—273
Helmholtz's equation, fundamental solution of      53—58
Helmholtz's equation, Green's function for      265—285
Helmholtz's equation, half-plane problem for      281—290 321—327
Helmholtz's equation, mean value property      105
Hilbert — Schmidt kernels      135 375
Huyghens' principle      256
Hyperbolic equations      80—85
Images      149 166—169 204 209 211 251 252
Incident field      299
Initial data      72
Initial value problem      73
Integral equations for capacity      172—174 351
Integral equations for scattering problems      301
Integral equations of potential theory      122—130 146 171—193
Integral equations of Wiener — Hopf type      311—331
Integral equations with difference kernel      311—331
Integrodifferential equation      366—367 389—390
Interior operator      74
Intermediate problems      382
Jones, D.S.      368
Kantorovich — Lebedev transform      273
Kirchhoff's formula      263
Klein — Gordon equation      70
Laplace transform      38 206 218 236 249 401—402
Laplace's equation      40 49—53 88—192 see
Laplace's equation in two dimensions      128
Laplace's equation, eigenvalue problem for      136—142 231—234
Laplace's equation, exterior Dirichlet problem for      123 129 142
Laplace's equation, fundamental solution of      49—53
Laplace's equation, Green's function for      130—171
Laplace's equation, Green's theorem for      40
Laplace's equation, interior Dirichlet problem for      122 128 135
Laplace's equation, Neumann problem for      126 128
Layers, double      12 113
Layers, simple      7 39 112
Layers, surface      7 12 110—121
Least squares      361—363
Left-side function      28
Legendre functions      393—398
Levine, H.      283 311 340 357
Limiting absorption      259—261
Locally integrable      2
Macdonald function      266 279 321
Mapping function      164
Maximin theorem      371
Maximum Principle for harmonic functions      101
Maximum principle for heat conduction      224
Maximum theorem for functionals      337
Mean value property for biharmonic equation      105
Mean value property for Helmholtz equation      105
Mean value property of harmonic functions      99
Mehler's integral representation      284
Mellin transform      167 169
Minimax theorem      371
Monochromatic excitation      259—261
Multiindex      2
Neumann problem      126 128 171 185—191
Neumann problem and fluid flow      185—191
Neumann problem, consistency condition for      171
Neumann problem, extremal principles for      363—364
Null sequences      3 30 36
One-sided functions      28
Operators, base      382
Operators, bounded above      372
Operators, bounded below      372
Operators, completely continuous      133—135 375
Operators, Hilbert — Schmidt      135 375
Operators, indefinite      355—357
Operators, integrodifferential      366 389—390
Operators, interior      74
Operators, nonnegative      336
Operators, nonsymmetric      355—357
Operators, positive      337 358
Operators, self-adjoint      9 376
Operators, semibounded      372
Operators, strongly positive      343 363
Operators, symmetric      337
Parabolic equations      80
Parseval formula      24
Partial differential equations      88—311
Partial differential equations for distributions      39—48
Partial differential equations of first order      76—79
Partial differential equations of second order      79—87
Partial differential equations, classification of      73—87
Partial differential equations, elliptic      80
Partial differential equations, fundamental solutions of      48—72
Partial differential equations, hyperbolic      80
Partial differential equations, parabolic      80
Plane wave      285—286 302
Poisson equation      103 345
Poisson kernel      95
Poisson sum formula      212
Pole of fundamental solution      48
Potential theory      88—193 267 see
Projection operator      335—336
Propagation of discontinuities      46 77
Radiation condition      297
Rayleigh quotient      369
Rayleigh — Ritz procedure      see "Ritz — Rayleigh"
Reciprocity principle      303 342 368
Rellich, F.      297
Retarded potential      254
Riemann mapping theorem      164
Riemann surface      270
Right-side function      28
Ritz — Rayleigh, equations      341 363 366—368
Ritz — Rayleigh, procedure      332 334 340—343 362 377—378
Scattered amplitude      304
Scattered field      300
Scattering      299—311 328
Scattering cross section      303
Scattering cross section, stationary principle for      309
Schwarz constants      380
Schwarz inequality      344
Schwinger — Levine principle      311 340 357
Self-adjoint      9 376
Semigroups of operators      227
Slow growth, distribution of      31 37
Slow growth, functions of      29
Sokolnikoff, I.S.      346
Sommerfeld, A.      277 297
Spherical harmonics      109 126 127 144 290 295 393—398
Spherical wave      267 290
Stationary principles for indefinite operators      356
Stationary principles for nonsymmetric operators      357 367—368
Stationary principles for scattering cross section      309—311
Steady heat conduction      88 183
Stefan Problem      237
Strict solution      42
Support      2
Symbolic functions      see "Distributions"
Tangential derivative      74
Telegraphy equation      65 258
Test functions      3
Test functions of rapid decay      30 36
Test functions, convergence of      3 30
Test functions, null sequences of      3 30 36
Theta function      212
Torsional rigidity      346—348
Transversal      41
Uniqueness theorem for heat conduction      225—226
Uniqueness theorem for Helmholtz's equation      296—299
Uniqueness theorem for Laplace's equation      102
Uniqueness theorem for wave equation      243
variation-iteration      380—381
Variational methods      see "Extremal principles" "Stationary
Wave equation      81 194 196—197 243—265 289—294
Wave equation in composite medium      293
Wave equation, d'Alembert's solution of      85
Wave equation, damped      65—69 257—259 264
Wave equation, fundamental solution of      61—65
Wave equation, generalized solution of      44
Wave equation, Green's function of      246—256
Wave equation, Green's theorem for      41 47 197
Wave equation, method of descent for      255—256
Wave guide      291
Weber transform      242
Weinstein, A.      382
Well-posed problem      89
Wiener — Hopf equation      311—331
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå