Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Seneta E. — Non-negative matrices: an introduction to theory and application
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Non-negative matrices: an introduction to theory and application
Àâòîð: Seneta E.
Àííîòàöèÿ: Since its inception by Perron and Frobenius, the theory of non-negative matrices has developed enormously and is now being used and extended in applied fields of study as diverse as probability theory, numerical analysis, demography, mathematical economics, and dynamic programming, while its development is still proceeding rapidly as a branch of pure mathematics in its own right. While there are books which cover this or that aspect of the theory, it is nevertheless not uncommon for workers in one or other branch of its development to be unaware of what is known in other branches, even though there is often formal overlap. One of the purposes of this book, through its aiming at breadth rather than depth, is to relate various aspects of the theory, insofar as this is possible.
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /
Ñåðèÿ: Ñäåëàíî â õîëëå
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 1974
Êîëè÷åñòâî ñòðàíèö: 256
Äîáàâëåíà â êàòàëîã: 23.05.2011
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Absorption with probability one 92—93
Absorption, mean time to 94—95
Absorption, probabilities into essential classes 93
Absorption, Probability 158—159
Age structure, evolution of 76
Albert, E. 177
Allen, B. 178
Anderssen, R.S. 178
Backward equations 93
Barriers, absorbing 88 95 158
Barriers, elastic 88
Barriers, reflecting 88 101 179
Bassett, L. 48
Bellman, R. 23
Bernoulli scheme 87
Bernstein, S.N. 99 117 118 119
Birkhoff, G. 25 57
Boolean algebra 50
Boolean algebra, relation matrix 50 107
Borel sets 150—152
Boundary theory 147—152 178
Branching processes 78
Brauer, A. 23 48 55
Brualdi, R.A. 48 57
Buchanan, M.L. 83
Buharaev, R.G. 57
Burger, E. 33
Cantor diagonal selection principle 132 150
Cauchy sequence 148—150
Cherubino, S. 22
Chung, K.L. 23 155
Classes, aperiodic 15 124
Classes, essential 9 91 125
Classes, inessential 9—10 91—99 125
Classes, lead to 11
Classes, period of 14 124—125
Classes, self-communicating 10 124
Classes, subclasses of 16—22
Coale — Lopez Theorem 77
Coding theory 119
Collatz, L. 24
Combinatorial properties 49—55
Contraction properties of P 68 77 104 111
Control theory 66
Control theory, parameter 66
Convergence, geometric in ergodicity of M.C.’s 91 97
Convergence, geometric in weak ergodicity 72 106
Convergence, norm 162
Convergence, parameter 26 61 161—181
Convergence, uniform in strong ergodicity 75
Convergence, uniform in T 78
Convexity in non-negative matrices 82—83
Convolution 126
Cycle of indices 9 26 40 48
Daley, D.J. 178
Darroch, J.N. 47
de Oliveira, G.N. 56 57 205
Debreu, G. 22 26 34 35 38n
Decision, linear multistage 66
Decomposition of superregular vector 145
Decomposition, ‘last exit’ 126
Demography 27 67 76—77
Derman, C. 154 168n
Determinants, infinite 174—181
Dionisio, J.J. 47 54
Divisor, greatest common 15 182—185
Djokovic, D.i. 57
Dmitriev, N.A. 56
Doeblin, W. 99 100 100n 118 119
Doeblin’s theory of M.C.’s 155
Doob, J.L. 156
Dual approach to countable P 140 157
Dulmage, A.L. 54
Dynamic programming 59 66
Dynkin, E.B. 56
Economics, mathematical 30—33 40 59 66
Eigenvalues of cyclic matrix 21—25
Eigenvalues of Perron matrix 43 47
Eigenvalues, analogue of Perron — Frobenius 160
Eigenvalues, bounds for 6 23 28 49 55—57
Eigenvalues, generalized problem of 48
Eigenvalues, invariance under rotation 22
Eigenvalues, Perron — Frobenius 20; see also "Perron — Frobenius"
Erdoes — Feller — Pollard Theorem 156
Erdoes, P. 156
Ergodic theorems 69 73 91 97 138 156
Ergodicity of primitive M.C.’s 91
Ergodicity of regular M.C.’s 97
Ergodicity, characterization of 102
Ergodicity, coefficient of 118
Ergodicity, geometric 170—171 178
Ergodicity, pseudo- 98—99
Ergodicity, strong 73 104 111—121
Ergodicity, uniform weak 108
Ergodicity, weak 69 103—121
Fan, K. 23 33 47
Feller, W. 155 156
Fiedler, M. 47
Forward equations 93
Frechet, M. 99
Frobenius, G. 22 25 33 34 55
Functions, convex 194—195
Functions, generating 125—129 141 162—165
Functions, subadditive 184
Functions, superconvex 194—195
Functions, supermultiplicative 184
Functions, upper semicontinuous 1 193—194
Gale, D. 34
Gantmacher, F.R. 22 33 47 56
Gauss — Seidel iteration 36—39 102
Gauss — Seidel iteration, matrix 36
Generators, extreme 48
Georgescu-Roegen, N. 33
Golub, G. 178
Gordon, P. 23
Green’s function 143
Hadamard, J. 100
Hajnal, J. 118
Harris — Veech condition 156
Harris, T.E. 156
Hawkins — Simon condition 32 35
Hawkins, D. 33
Haynsworth, E.V. 56n
Heap, B.R. 54
Heathcote, C.R. 8
Helly selection principle 151—152
Helly — Bray lemma 152
Herstein, I.N. 22 24 26 34 35 38n
Hille, E. 184n
Hoelder’s inequality 83 194—195
Holladay, J.C. 54
Holmes, P.T. 156
Homogeneity, asymptotic 111—118
Hostinsky, B. 99
Householder, A.S. 23 39
Hypergeometric probabilities 101
Index of primitivity 50—52
Index, aperiodic 15 90 130—134 141
Index, consequent 10
Index, essential 9 90 102 123 155
Index, inessential 9 90 102 123 155 157
Index, leads to 9
Index, null-recurrent 127
Index, period of 14 90 123 160
Index, periodic 156
Index, positive-recurrent 127 157
Index, R-null 163—181
Index, R-positive 163—181
Index, R-recurrent 163—181
Index, R-transient 163—181
Index, recurrent 127 130—134 141
Index, transient 127 157—159
Indices, chain of 9
Indices, Chung’s exposition on 23
Indices, classification of 9 49 90 124—127 161—165
Indices, communicating 9 90
Indices, cycle of 9 26 40 48
Indices, Kolmogorov’s classification of 23
Indices, relabelling of 12
Indices, residue class of 16—22
Indices, simultaneous permutation of 12
Indices, subclass of 16—22
Inequality, fundamental for minimal vector 143 147
Information theory 119
Initial probability distribution 86 91 97—99
Iterative methods 35—39
Jacobi iteration 36—39
Jacobi iteration, matrix 36
Joffe, A. 77
Jordan canonical form 38
Karlin, S. 23 34
Karpelivich, F.I. 56
Kaucky, J. 102
Keilson, J.H. 205
Kemeny, J.G. 34 77 97n 99 155 156 180
Kendall, D.G. 156 177 178 179
Kernel 143
Khintchine, A.Y. 184n
Kingman, J.F.C. 83 178 184n 195n
Klimko, L.A. 205
Knapp, A.W. 155 156
Knopp, P. 57
Kolmogorov, A.N. 23 77 100 117 155 156
Kolmogorov’s theory of M.C.’s 155
Konecny, M. 102
Kotelyanskii — Gantmacher assertion 33
Kotelyanskii, D.M. 33 35 49
Kozniewska, I. 118
Kuich, W. 178 179 180
Larisse, J. 119
Law of iterated logarithm 119
Ledermann, W. 49 55
Leontief model 30—38
Leontief model, dynamic version 32 38
Leontief model, matrix 40
Leontief model, open 30 32 34—35
Leontief model, static version 32
Lopez, A. 77
Lynn, M.S. 54
M matrix 47
Malecot, G. 101
Mandl, P. 47 66 67 178
Mangasarian, O.L. 48
Mapping, continuous 44
Mappingá upper semicontinuous 193—194
Marcus, M. 55 56 57
Markov chains 23 34—35 77 84—102 123—126 140 147 157
Markov matrices 105 117—121 178
Markov processes 36 40 47
Markov property 85
Markov regular chains 97
Markov, A.A. 77 99 117
Markov’s theorem 117
Martin entrance boundary 158—159
Martin exit boundary 140 147—150 178
Matrices of Laplace — Stieltjes transforms 83
Matrices of moduli 25
Matrices, acyclic (aperiodic) 15
Matrices, arbitrary non-negative 1 25 54 123
Matrices, block sub- 13 21
Matrices, Boolean relation 50 107
Matrices, canonical form 10—11 17 27 124
Matrices, characterization of irreducible ML 42
Matrices, column finite 179—180
Matrices, combinational properties of 49—55
Matrices, convergence radius of irreducible 26
Matrices, cyclic (periodic) 9 15 20—25 179 180
Matrices, determinantal and cofactor properties ofinfinite 171—181
Matrices, deterministic 52
Matrices, diagonalization of 57—58
Matrices, doubly stochastic 56—57 101 157
Matrices, essentially positive 40
Matrices, fully indecomposable 57—58
Matrices, fundamental for absorbing M.C. 94
Matrices, Gauss — Seidel 36
Matrices, graph theory of 23 50 54
Matrices, incidence 1 50 106—107 111
Matrices, infinite 23 66 123—181
Matrices, inhomogeneous products of 67—78
Matrices, irreducible 7 9 15—27 43—51 90 124 134—140
Matrices, irreducible ML 40
Matrices, Jacobi 36
Matrices, Leontief 40
Matrices, M 47
Matrices, Markov 105 108 117—121 178
Matrices, Metzler 40
Matrices, Minkowski 40
Matrices, ML 40 48—49
Matrices, Morishima 48
Matrices, normed 111 120
Matrices, null-recurrent 135—140 156—157 170
Matrices, path diagrams of 10 23 124
Matrices, periodic (cyclic) 9 15 20—25 179 180
Matrices, permanents of 57
Matrices, permutable structure of 22
Matrices, permutation of 57
Matrices, Perron 43—49
Matrices, positive-recurrent 135—140 156—157
Matrices, power-positive 43—48
Matrices, quasi-Markov 121
Matrices, R-null 164—181
Matrices, R-positive 164—181
Matrices, R-recurrent 164—181
Matrices, R-transient 164—181
Matrices, recurrent stochastic 135—140 156—157
Matrices, regular stochastic 97 105—108 120
Matrices, representation of cyclic 25
Matrices, row finite 179—180
Matrices, scrambling stochastic 108—110 118—120
Matrices, sets of irreducible 59—83
Matrices, sets of positive 67
Matrices, similarity transformation of 12
Matrices, slowly spreading stochastic 180
Matrices, spectral decomposition of 7 42
Matrices, stable stochastic 104
Matrices, stochastic 23 56 68 77 84—121 123—160 163—165 168—171 176—181
Matrices, sub-stochastic 31 34 98—99 142 171
Matrices, Tambs — Lyche 40
Matrices, transient stochastic 135—140 156—157
Matrices, transition 86
Matrices, transition intensity 40 47
Matrices, truncations of infinite 171—181
Matrices, unitary 80 190—192
Maybee, J.S. 48
McFarland, D.D. 77
Measure, -invariant 166—168
Measure, -subvariant 166—168
Measure, bounds for R-invariant 175
Measure, invariant 135—140 155—156 168 181
Measure, mean recurrence 127
Measure, minimal subinvariant 137
Measure, probability 150—152
Measure, R-invariant 163—181
Measure, R-subinvariant 163—181
Measure, subinvariant 134—140 155
Medlin, G.W. 205
Mendelsohn, N.S. 54
Metric d on R 148—150
Metric space 148—152 155
Metzler matrix 40
Ðåêëàìà