Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Seneta E. — Non-negative matrices: an introduction to theory and application
Seneta E. — Non-negative matrices: an introduction to theory and application



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Non-negative matrices: an introduction to theory and application

Àâòîð: Seneta E.

Àííîòàöèÿ:

Since its inception by Perron and Frobenius, the theory of non-negative matrices has developed enormously and is now being used and extended in applied fields of study as diverse as probability theory, numerical analysis, demography, mathematical economics, and dynamic programming, while its development is still proceeding rapidly as a branch of pure mathematics in its own right. While there are books which cover this or that aspect of the theory, it is nevertheless not uncommon for workers in one or other branch of its development to be unaware of what is known in other branches, even though there is often formal overlap. One of the purposes of this book, through its aiming at breadth rather than depth, is to relate various aspects of the theory, insofar as this is possible.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñåðèÿ: Ñäåëàíî â õîëëå

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1974

Êîëè÷åñòâî ñòðàíèö: 256

Äîáàâëåíà â êàòàëîã: 23.05.2011

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Absorption with probability one      92—93
Absorption, mean time to      94—95
Absorption, probabilities into essential classes      93
Absorption, Probability      158—159
Age structure, evolution of      76
Albert, E.      177
Allen, B.      178
Anderssen, R.S.      178
Backward equations      93
Barriers, absorbing      88 95 158
Barriers, elastic      88
Barriers, reflecting      88 101 179
Bassett, L.      48
Bellman, R.      23
Bernoulli scheme      87
Bernstein, S.N.      99 117 118 119
Birkhoff, G.      25 57
Boolean algebra      50
Boolean algebra, relation matrix      50 107
Borel sets      150—152
Boundary theory      147—152 178
Branching processes      78
Brauer, A.      23 48 55
Brualdi, R.A.      48 57
Buchanan, M.L.      83
Buharaev, R.G.      57
Burger, E.      33
Cantor diagonal selection principle      132 150
Cauchy sequence      148—150
Cherubino, S.      22
Chung, K.L.      23 155
Classes, aperiodic      15 124
Classes, essential      9 91 125
Classes, inessential      9—10 91—99 125
Classes, lead to      11
Classes, period of      14 124—125
Classes, self-communicating      10 124
Classes, subclasses of      16—22
Coale — Lopez Theorem      77
Coding theory      119
Collatz, L.      24
Combinatorial properties      49—55
Contraction properties of P      68 77 104 111
Control theory      66
Control theory, parameter      66
Convergence, geometric in ergodicity of M.C.’s      91 97
Convergence, geometric in weak ergodicity      72 106
Convergence, norm      162
Convergence, parameter      26 61 161—181
Convergence, uniform in strong ergodicity      75
Convergence, uniform in T      78
Convexity in non-negative matrices      82—83
Convolution      126
Cycle of indices      9 26 40 48
Daley, D.J.      178
Darroch, J.N.      47
de Oliveira, G.N.      56 57 205
Debreu, G.      22 26 34 35 38n
Decision, linear multistage      66
Decomposition of superregular vector      145
Decomposition, ‘last exit’      126
Demography      27 67 76—77
Derman, C.      154 168n
Determinants, infinite      174—181
Dionisio, J.J.      47 54
Divisor, greatest common      15 182—185
Djokovic, D.i.      57
Dmitriev, N.A.      56
Doeblin, W.      99 100 100n 118 119
Doeblin’s theory of M.C.’s      155
Doob, J.L.      156
Dual approach to countable P      140 157
Dulmage, A.L.      54
Dynamic programming      59 66
Dynkin, E.B.      56
Economics, mathematical      30—33 40 59 66
Eigenvalues of cyclic matrix      21—25
Eigenvalues of Perron matrix      43 47
Eigenvalues, analogue of Perron — Frobenius      160
Eigenvalues, bounds for      6 23 28 49 55—57
Eigenvalues, generalized problem of      48
Eigenvalues, invariance under rotation      22
Eigenvalues, Perron — Frobenius      20; see also "Perron — Frobenius"
Erdoes — Feller — Pollard Theorem      156
Erdoes, P.      156
Ergodic theorems      69 73 91 97 138 156
Ergodicity of primitive M.C.’s      91
Ergodicity of regular M.C.’s      97
Ergodicity, characterization of      102
Ergodicity, coefficient of      118
Ergodicity, geometric      170—171 178
Ergodicity, pseudo-      98—99
Ergodicity, strong      73 104 111—121
Ergodicity, uniform weak      108
Ergodicity, weak      69 103—121
Fan, K.      23 33 47
Feller, W.      155 156
Fiedler, M.      47
Forward equations      93
Frechet, M.      99
Frobenius, G.      22 25 33 34 55
Functions, convex      194—195
Functions, generating      125—129 141 162—165
Functions, subadditive      184
Functions, superconvex      194—195
Functions, supermultiplicative      184
Functions, upper semicontinuous      1 193—194
Gale, D.      34
Gantmacher, F.R.      22 33 47 56
Gauss — Seidel iteration      36—39 102
Gauss — Seidel iteration, matrix      36
Generators, extreme      48
Georgescu-Roegen, N.      33
Golub, G.      178
Gordon, P.      23
Green’s function      143
Hadamard, J.      100
Hajnal, J.      118
Harris — Veech condition      156
Harris, T.E.      156
Hawkins — Simon condition      32 35
Hawkins, D.      33
Haynsworth, E.V.      56n
Heap, B.R.      54
Heathcote, C.R.      8
Helly selection principle      151—152
Helly — Bray lemma      152
Herstein, I.N.      22 24 26 34 35 38n
Hille, E.      184n
Hoelder’s inequality      83 194—195
Holladay, J.C.      54
Holmes, P.T.      156
Homogeneity, asymptotic      111—118
Hostinsky, B.      99
Householder, A.S.      23 39
Hypergeometric probabilities      101
Index of primitivity      50—52
Index, aperiodic      15 90 130—134 141
Index, consequent      10
Index, essential      9 90 102 123 155
Index, inessential      9 90 102 123 155 157
Index, leads to      9
Index, null-recurrent      127
Index, period of      14 90 123 160
Index, periodic      156
Index, positive-recurrent      127 157
Index, R-null      163—181
Index, R-positive      163—181
Index, R-recurrent      163—181
Index, R-transient      163—181
Index, recurrent      127 130—134 141
Index, transient      127 157—159
Indices, chain of      9
Indices, Chung’s exposition on      23
Indices, classification of      9 49 90 124—127 161—165
Indices, communicating      9 90
Indices, cycle of      9 26 40 48
Indices, Kolmogorov’s classification of      23
Indices, relabelling of      12
Indices, residue class of      16—22
Indices, simultaneous permutation of      12
Indices, subclass of      16—22
Inequality, fundamental for minimal vector      143 147
Information theory      119
Initial probability distribution      86 91 97—99
Iterative methods      35—39
Jacobi iteration      36—39
Jacobi iteration, matrix      36
Joffe, A.      77
Jordan canonical form      38
Karlin, S.      23 34
Karpelivich, F.I.      56
Kaucky, J.      102
Keilson, J.H.      205
Kemeny, J.G.      34 77 97n 99 155 156 180
Kendall, D.G.      156 177 178 179
Kernel      143
Khintchine, A.Y.      184n
Kingman, J.F.C.      83 178 184n 195n
Klimko, L.A.      205
Knapp, A.W.      155 156
Knopp, P.      57
Kolmogorov, A.N.      23 77 100 117 155 156
Kolmogorov’s theory of M.C.’s      155
Konecny, M.      102
Kotelyanskii — Gantmacher assertion      33
Kotelyanskii, D.M.      33 35 49
Kozniewska, I.      118
Kuich, W.      178 179 180
Larisse, J.      119
Law of iterated logarithm      119
Ledermann, W.      49 55
Leontief model      30—38
Leontief model, dynamic version      32 38
Leontief model, matrix      40
Leontief model, open      30 32 34—35
Leontief model, static version      32
Lopez, A.      77
Lynn, M.S.      54
M matrix      47
Malecot, G.      101
Mandl, P.      47 66 67 178
Mangasarian, O.L.      48
Mapping, continuous      44
Mappingá upper semicontinuous      193—194
Marcus, M.      55 56 57
Markov chains      23 34—35 77 84—102 123—126 140 147 157
Markov matrices      105 117—121 178
Markov processes      36 40 47
Markov property      85
Markov regular chains      97
Markov, A.A.      77 99 117
Markov’s theorem      117
Martin entrance boundary      158—159
Martin exit boundary      140 147—150 178
Matrices of Laplace — Stieltjes transforms      83
Matrices of moduli      25
Matrices, acyclic (aperiodic)      15
Matrices, arbitrary non-negative      1 25 54 123
Matrices, block sub-      13 21
Matrices, Boolean relation      50 107
Matrices, canonical form      10—11 17 27 124
Matrices, characterization of irreducible ML      42
Matrices, column finite      179—180
Matrices, combinational properties of      49—55
Matrices, convergence radius of irreducible      26
Matrices, cyclic (periodic)      9 15 20—25 179 180
Matrices, determinantal and cofactor properties ofinfinite      171—181
Matrices, deterministic      52
Matrices, diagonalization of      57—58
Matrices, doubly stochastic      56—57 101 157
Matrices, essentially positive      40
Matrices, fully indecomposable      57—58
Matrices, fundamental for absorbing M.C.      94
Matrices, Gauss — Seidel      36
Matrices, graph theory of      23 50 54
Matrices, incidence      1 50 106—107 111
Matrices, infinite      23 66 123—181
Matrices, inhomogeneous products of      67—78
Matrices, irreducible      7 9 15—27 43—51 90 124 134—140
Matrices, irreducible ML      40
Matrices, Jacobi      36
Matrices, Leontief      40
Matrices, M      47
Matrices, Markov      105 108 117—121 178
Matrices, Metzler      40
Matrices, Minkowski      40
Matrices, ML      40 48—49
Matrices, Morishima      48
Matrices, normed      111 120
Matrices, null-recurrent      135—140 156—157 170
Matrices, path diagrams of      10 23 124
Matrices, periodic (cyclic)      9 15 20—25 179 180
Matrices, permanents of      57
Matrices, permutable structure of      22
Matrices, permutation of      57
Matrices, Perron      43—49
Matrices, positive-recurrent      135—140 156—157
Matrices, power-positive      43—48
Matrices, quasi-Markov      121
Matrices, R-null      164—181
Matrices, R-positive      164—181
Matrices, R-recurrent      164—181
Matrices, R-transient      164—181
Matrices, recurrent stochastic      135—140 156—157
Matrices, regular stochastic      97 105—108 120
Matrices, representation of cyclic      25
Matrices, row finite      179—180
Matrices, scrambling stochastic      108—110 118—120
Matrices, sets of irreducible      59—83
Matrices, sets of positive      67
Matrices, similarity transformation of      12
Matrices, slowly spreading stochastic      180
Matrices, spectral decomposition of      7 42
Matrices, stable stochastic      104
Matrices, stochastic      23 56 68 77 84—121 123—160 163—165 168—171 176—181
Matrices, sub-stochastic      31 34 98—99 142 171
Matrices, Tambs — Lyche      40
Matrices, transient stochastic      135—140 156—157
Matrices, transition      86
Matrices, transition intensity      40 47
Matrices, truncations of infinite      171—181
Matrices, unitary      80 190—192
Maybee, J.S.      48
McFarland, D.D.      77
Measure, $\beta$-invariant      166—168
Measure, $\beta$-subvariant      166—168
Measure, bounds for R-invariant      175
Measure, invariant      135—140 155—156 168 181
Measure, mean recurrence      127
Measure, minimal subinvariant      137
Measure, probability      150—152
Measure, R-invariant      163—181
Measure, R-subinvariant      163—181
Measure, subinvariant      134—140 155
Medlin, G.W.      205
Mendelsohn, N.S.      54
Metric d on R      148—150
Metric space      148—152 155
Metzler matrix      40
1 2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå