Авторизация
Поиск по указателям
Seneta E. — Non-negative matrices: an introduction to theory and application
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Non-negative matrices: an introduction to theory and application
Автор: Seneta E.
Аннотация: Since its inception by Perron and Frobenius, the theory of non-negative matrices has developed enormously and is now being used and extended in applied fields of study as diverse as probability theory, numerical analysis, demography, mathematical economics, and dynamic programming, while its development is still proceeding rapidly as a branch of pure mathematics in its own right. While there are books which cover this or that aspect of the theory, it is nevertheless not uncommon for workers in one or other branch of its development to be unaware of what is known in other branches, even though there is often formal overlap. One of the purposes of this book, through its aiming at breadth rather than depth, is to relate various aspects of the theory, insofar as this is possible.
Язык:
Рубрика: Математика /
Серия: Сделано в холле
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1974
Количество страниц: 256
Добавлена в каталог: 23.05.2011
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Metzler, L.A. 34 40
Metzler’s Theorem 34
Miller, H.D. 83
Minc, H. 55 56 57
Minkowski matrix 40
Minkowski, H. 40
Minors, all 34 171—181
Minors, leading principal 28 34 35 41 49 171—181
Mirsky, L. 56
ML matrix 40 48—49
Morgenstern, O. 34
Morishima matrix 48
Morishima, M. 32n 33 48
Mortality-fertility conditions 76
Mott, J.L. 117 118 121
Moy, S.-T.C. 156 177 178
Mustafin, H.A. 117 118 119 120
Nelson, E. 156
Neveu, J. 156
Norm, Euclidean 80—82 191—192
Number theory 40 182—185
Numerical analysis 27
Oldenburger, R. 38n 80n 92n
Operators on sequence spaces 156 178
Operators, finite-dim.extensions of Perron — Frobenius theory 48
Operators, linear, mapping convex cone 48
Optimal choice condition 60
Optimal productivity 66
Optimization 59—60 66
Orey, S. 156
Ostenc, E. 118
Ostrowski, A.M. 47 55
Paithasarathy, K.R. 151
Parlett, B.N. 83
Patter, S.V. 48 57
Patterns, of stochastic matrices 106
Patterns, recurrence of 107
Paz, A. 23 118 119 120 121 205
Perfect, H. 56
Perkins, P. 54
Permanent, of a matrix 57
Perron matrix 43—49
Perron — Frobenius eigenvalue 20
Perron — Frobenius eigenvalue, algebraic multiplicity of 8
Perron — Frobenius eigenvalue, bounds for 6 23 28 55
Perron — Frobenius eigenvalue, geometric multiplicity of 8
Perron — Frobenius eigenvectors 20 59—67 168 172 179
Perron — Frobenius theorem 1 7 25 46—47
Perron — Frobenius theory 7 20
Perron — Frobenius theory for infinite P 125 156 177—178
Perron — Frobenius theory, extensions of 40 43 48
Perron — Frobenius theory, other approaches 23
Perron — Frobenius theory, Wielandt’s approach 22—23
Perron, O. 22
Philips, R.S. 184n
Poincare, H. 99
Poisson — Martin representation 142 147—152
Pollard, H. 156
Polya urn scheme 89 118
Polynomial, modified characteristic of T 180
Potentials, non-decreasing sequence of 146
Potentials, theory of 142—147 156 178
Power-positive matrix 43—48
Probability, first passage 141
Probability, hypergeometric distribution of 101
Probability, initial distribution of 86 91 97—99
Probability, measures 150—152
Probability, stationary distribution of 86 91 97
Probability, transition 85—86
Probability, ‘taboo’ 125 141
Pruitt, W.E. 177
Ptak, W. 23 47 54
Putnam, C.R. 178
Quine, M.P. 78n
Quirk, J. 48
R-classification of irreducible P 168—171
R-classification of irreducible T 161
Radius, common convergence 26 61 161—181
Random walk (matrix) 88 95—97 101 158—159 179
Recurrence time, mean 127
Recurrence, criterion for 128
Recurrent event (matrix) 88—89 152—155 169 176—177 181
Regularity of M.C. 97 99—102
Regularity, positive 99—100
Resolvent 187
Rheinboldt, W.C. 205
Riesz decomposition 147
Robert, F. 205
Romanovsky, V.I. 23 99 100
Rosenberg, R.L. 39
Rosenblatt, D. 23 54
Samelson, H. 23
Samuelson, P.A. 48
Sarymsakov — Mustafin Theorem 118
Sarymsakov, T.A. 100 117 118 118n 119 120 178 179
Schneider, H. 24 48 55 57 118
Schutzenberger, H.P. 119
Schwartz, S 54
Scrambling property 108 109 117—120
Sedlacek, J. 23
Seneta, E. 47 66 67 118 158n 178 179 180
Sidak, Z. 55 156 178
Simon, H.A. 33
Sinkhorn, R. 57
Sirazhdinov, S.H. 121
Snell, L.J. 34 77 97n 99 155 156
Solidarity properties 134 165 171 178
Solow, R. 34 48
Space, unitary 191
Spectrum, localization of 55—57
Spitzer, F. 77
State space, non-constant 89 118
Stein — Rosenberg theorem 38—39
Stein, P. 39
Stochasticity assumption, asymmetry of 160
Strategy, homogeneous 66
Styan, G.P.H. 205
Subinvariance Theorem 20 60 134
Sucheston, L. 205
Suleimanova, H.R. 56
Superconvexity, in non-negative matrices 82—83
Tambs — Lyche matrix 40
Tambs-Lyche, R. 40
tappo-Danilevskii, J.A. 22
Taussky.O. 49
Theorem, Bolzano — Weierstrass 150
Theorem, Central Limit for M.C.’s 100 119
Theorem, Coale — Lopez 77
Theorem, Erdoes — Feller — Pollard 156
Theorem, Ergodic for regular M.C.’s 97
Theorem, Ergodic, for primitive M.C.’s 91 138
Theorem, General Ergodic, for primitive P 138
Theorem, Helly’s 151
Theorem, Markov’s 117
Theorem, Metzler’s 34
Theorem, Perron — Frobenius 1 7 25 46—47
Theorem, Riesz Decomposition 147
Theorem, Sarymsakov — Mustafin 118
Theorem, Schur’s 80 190—191
Theorem, Stein — Rosenberg 38—39
Theorem, Strong Ergodicity, for T 73
Theorem, Subinvariance 20 60 134
Theorem, Weak Ergodicity, for T 69
Thomasian, A.J. 119
Timan, O.Z. 56
Titchmarsh, E.C. 16 In
Transformation, T to P 163—164
Transformation, unitary 190—192
Transience, criterion for 128
Transience, geometric 169
Transience, strong 177 180
Transient M.C.’s 140 147
Truncations of infinite T 171—181
Truncations of positive recurrent P 177—181
Truncations, of infinite P 176—181
Tweedie, R.L. 178
Types of incidence matrices 107
Ullman, J.L. 26
Urban 99
Van der Waerden, B.L. 57
Vandergraft, J.S. 205
Varga, R.S. 22 23 25 38n 39 47 54 56
Vector, decomposition of superregular 145
Vector, demand 31 35
Vector, external input 33
Vector, integral representation of superregular 147—152
Vector, invariant 140—142
Vector, minimal superregular 143
Vector, potential of column 144
Vector, regular 142—152
Vector, subinvariant 140—142
Vector, subinvariant row 134
Vector, superregular 142—152
Vector, superregular row 157
Vector, supply 31N
Veech, W. 156
Vere-Jones theory of infinite T 177—181
Vere-Jones, D. 57 156 177 178
von Mises, R. 99 100
Weierstrass property 150
Wielandt, H. 22 23 24 25 47 48 54
Wielandt’s proof 22—23
Wolfowitz, J. 117 119
Wong, Y.K. 34 35
Woodbury, article of 34
Words, in stochastic matrices 119—121
Реклама