Авторизация
Поиск по указателям
Roe B.P. — Probability and Statistics in Experimental Physics
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Probability and Statistics in Experimental Physics
Автор: Roe B.P.
Аннотация: This book is a practical introduction to the use of probability and statistics in experimental physics for graduate students and advanced undergraduates. It is intended as a practical guide, not as a comprehensive text in probability and statistics. The emphasis is on applications and understanding, on theorems and techniques that are actually used in experimental physics. Proofs of theorems are generally omitted unless they contribute to the intuition in understanding and applying the theorem. The problems, some with worked solutions, introduce the student to the use of computers; occasional reference is made to some of the Fortran routines available in the CERN library, but other systems, such as Maple, will also be useful. Topics covered include: basic concepts and definitions; general results, independent of specific distributions; discrete distributions; the normal distribution and other continuous distributions; generating and characteristic functions; the Monte Carlo method and computer simulations; multi-dimensional distributions; the central limit theorem; inverse probability and confidence limits; estimation methods; curve fitting, robustness estimates, and likelihood ratios; interpolating functions and unfolding problems; fitting data with constraints; robust estimation methods.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1997
Количество страниц: 208
Добавлена в каталог: 18.10.2010
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
A postiori probability 3 4
a priori probability 1 3 103—105
Acceptance rejection method 65—67 73
Arrangements 28 37
Asymptotic efficiency of au estimate 121 123
Asymptotically normal distribution 123 163—166 171
B-spline functions 175 179
Background 13 26 31 70 112 143 157 159 176
Background subtraction 26 143 157 159 176
Bartlett S function 133 161 162 171 172
Bayes’ Theorem 102—104 113
Bernoulli trials 33 40 57 58 97 98
Betting odds for A against B 168
Biased estimate 132
Binomial coefficient 27 28 38
Binomial distribution (see Distributions binomial)
Breit-Wigner distribution (see Distributions Breit-Wigner)
Bridge hands of cards 28 30 38
Brownian motion 16
Bubble chamber 132
Buffon's needle 13
Cauchy distribution (see Distributions Breit-Wigner)
Cdn toss 1 3 33 196
Central limit theorem 42 58 60 90 93 95 96 98 99
Central moment 7 13 25
CERN v 23 66 70 71 149 158
CERN library v
Change of variable 18 21 171 184
Characteristic functions 54 58—63 81 85 86
Chi-square distribution (see Distributions chi-square)
Chi-square fitting 119 12 125 127 128 139 143 147 149 151 152 154 157 159 173 180
Cofactor 83 155
Combinatorial 27 29
Combining probability estimates 128
Combining several measurements 21 23 25 131 198
Complete spline 174
composition 54 55 63
Compound probability 54 55 57 61
Computer program v 1 2 13 66 70 73 135 158 159
Computing v 13 62 66 68—70 91 99 117 129 135 154 158 159 178 179 183 188 198
Conditional probability 6 36 64 77 102
Confidence interval 102 105—107 110 111
Confidence level 105 109—111
Confidence limit 102 107 113 117 153 166
Constraints 119 125 138 180 183 188
Convergence in probability 120
Convolution 54 55 57 59—61
correlated 9 18 19 66 84 86 92 123 135 138 147 150 151 180—183 185 187—189
Correlation coefficient 9 17 18 20 75 83 89 126
Correlation matrix 82 183
Counting rate 25 26
Covariance 75 76
Covariance matrix 144 146 151
Covaxiance mapping 89
Crass section 39
Cubic B-splines 175—177 179
Cubic splines 173 178
Curve fitting 47 135 138 180
Dead time 13
Degrees of freedom 23 47 48 60 86—88 111 119 120 123 125 127 128 139 142 143 147 152 168
Density function 1 4 5 8 13 15 38 44 48 52 53 55 58 62 63 65 68—70 73 75 80 84 85 88 89 96 104 105 120 122 125 129 159 160 169 176
Dependence 8 18 21 180
Detector efficiency 176
Die 2—4 9 58
Differential probability function (see Density function)
Diffusion 16 37
Direct probability 102
Discrete probability 5 6 29 33
Distribution function 1 3—5 38 49 60 62 63 69 94 95 128 161 171 189—191
Distributions, binomial distribution 33 35 37 39 40 42 45 53 57 58 60 97 101 110 111 117 196
Distributions, Breit — Wigner distribution 50 60 61 63 70 96 159 178 179
Distributions, Cauchy distribution (see Breit-Wigner distribution)
Distributions, chi-square distribution 42 45 47 50 60 86 88 119 120 123 125 127 128 139 142 147 151 152 168
Distributions, exponential distribution 62 63 73 74
Distributions, F distribution 47 49 142
Distributions, gamma distribution 39
Distributions, gaussian distribution (see Distributions normal)
Distributions, geometric distribution 57 58
Distributions, hypergeometric distribution 37 38 111
Distributions, Kolmogctrov — Smirnov Distribution 193 195 200
Distributions, multi-dimensional normal distribution 84 86 140
Distributions, multinomial distribution 37
Distributions, negative binomial distribution 37
Distributions, normal distribution 8 12 14 36 42 44—51 53 60 61 69 70 73—75 81 87 88 90—93 97 98 100 101 103 108 110 111 113 114 125 127 128 130 131 133 154 161 171 179 182 188 198
Distributions, Poisson distribution 33 35—40 42 45 55 57 58 60 70 91 100 105 109 111 117 128 130
Distributions, Rayleigh probability distribution 52
Distributions, runs distribution 187 188
Distributions, Smimov - Cramer-Von Mises distribution 191—193
Distributions, Student’s distribution 49 52 111 153
Distributions, two dimensional normal distribution 80 81 89
Dividing data in half 112
Drunkard’s Walk 16
Efficiency of an estimate 121 123
Efficiency of detector 72 73
Ellipse of concentration 80
Ellipsoid of concentration 83 85
Equations of constraint 180—182 184
Error estimate 16 23 25 49 52 53 105 114 138—141 151 156 157 164 184
Errors in quadrature 19
Excess (see Kurtosis)
expectation value 6 7 25 76 133 136 137 163 164 184
Exponential distribution (see Distributions exponential)
Extrapolated point 157
F distribution (see Distributions F)
Factorials 27 29 30
Fair com 53 172
Feller, W. 3
Fisher’s lemma (see Lemma of Fisher)
Fluctuations 89 90
Frequency function (see Density function)
Gamma distribution (see Distributions gamma)
Gamma function 51
Gaussian distribution (see Distributions normal)
Generating functions 54 56 58 60 61
Geometric distribution (see Distributions geometric)
HBOOK 70 71 158
Histogram package v 70 71
Histograms 45 70 72 73 177 179 189—191 196—198
Hypergeometric distribution (see Distributions Hypergeometric)
Hypothesis of desperation 104 105 107 109 116
Hypothesis testing 47 169 171 190 193 196 198
Identical trials 2
Importance sampling 65 73
Independence 2 3 9 13 14 16—18 21—23 25 33 36 45 48 49 54 55 58 59 61 69 75 76 83 85—88 90 91 120 126—128 135 138 165 168 169 181
Integral probability (see Distribution function)
Interpolated point 141 156 157
Interpolating functions 173—176 178
Inverse probability 102 113
Iterated logarithm 97 98
Iterations to find minima/maxima 149 159 183 184 188
Jacknife 161 171
James, F. 67 97 152
Khintchine, A. 97
Kolmogorov — Smirnov distribution (see Distributions Kolmogorov
Kolmogorov — Smirnov test 193
Kroneker 87
kurtosis 7 8 153 154 166
Lagrange multipliers 180
Least squares 118 119 124 129 138 153 175 189 198
Lemma of Fisher 87 88
Likelihood contour 151—153
Likelihood ratio 161 168 171
Linear least squares 175
Linear regression 77 78 81 83
LOREN 72 73
Mann, M.B. and Whitney, D R 198
Maple V 158
Marbe, K. 3
Marginal probability 5
Maximum likelihood 118 120 139 151 158 159 162
Maximum likelihood, estimate 125 130 133 162
Mean 7 8 13 16 18 21—23 25 33 36—38 40 44 45 47 49 53 60 69 77 80 86—88 96 105 110 113 114 117 128 130 131 133 153 164 166 171 182 187
Measurement error 18 103 134 141 164
Median 8
method 120 123 129—133 135 159 160
Method, theorem 120
MINUIT 149 150 152 158 182
MODE 8
Modified chi-squared minimum, method 119 120 124 138 182
moment 7 13 47 50 57 61 75
Moment matrix 75 82 85—87 135 140 147 151 180 184 186 187
Monte Carlo efficiency 62 68 74
Monte Carlo simulation 62 70 74 97 129 158 172 177 178
Multi-dimensional distribution 75 82
Multi-dimensional normal distribution (see Distributions multi
Multinomial coefficients 37
Multinomial distribution (see Distributions multinomial)
Multiple correlation coefficient 84
Multiple scattering 14—16 21 22 25 43 76 79 82 93 96 99 134 169
Natural spline 173 174
Negative binomial distribution (see Distributions negative
Non-linear parameters 135 147—149 154
Normal distribution (see Distributions normal)
Not-a-knot condition 174 176
Parratt, L.G 104
Partial correlation coefficient 84
PCSAS v
permutations 37
Pivotal quantity 111
Plural scattering 95
Poisson distribution (see Distributions Poisson)
Poisson postulate 36
Poisson trials 58
Population mean 125
probability 1—3
Probability of causes 102
Propagation of errors 18 21 97
Pseudo-random number v 13 62—67 68 74 91 92 158
Quadratic form 76 77
Random number (see Pseudo-random number)
Random walk 16
Randomization test 198
Randomness 1 2
RANMAR 66—68
Raudom variable 5—7 18 34 55 59 61 62 75 90 91 133
Rayleigh probability distribution (see Distributions Rayleigh)
Regression analysis 118 138
Regression line 77 78 81 83
Regression plane 83
Regular estimate 121
Regularization method 145 177
Regularization parameter 145
Relative frequency 2 3
Renyi theorem 195
Resolution function 176 178 179
RMARIN 67 68
Robust 153
Root N law 14 21
runs 196
Runs distribution (see Distributions runs)
Rutherford, scattering 16 93—96
Sagitta 163 164
Sample correlation coefficient 134
Sample mean 25 133 198
Sample space 5 13 18
Sampling 38 65 73 106 125 131 133 190 193 195 198
Sampling with replacement 32 37
Sampling without replacement 27 32 38
SAS v
Semi-positive definite quadratic form 76 82
Significance level 191
Significance of a signal 111 143 146 178 191
Smirnov theorem 195
Spline functions 173 175 178
Standard deviation 7 8 18 33 61 80 97 99 103 105 111 112 151 152 171
Student’s distribution (see Distributions Student’s)
Sufficient statistic 111 122 123 127 168
Sum of squares 86 119
Total correlation coefficient 83
Two dimensional distribution 75
Two dimensional normal distribution (see Distributions Two
Unbiased estimate 121
Uncorrelated 9 76 85 89
Unfolding 173 176 178 179
Unphysical region 117
Variance 7 8 10 12 18—26 34 36 44 45 47 49 51—53 57 59 60 69 78 80 86—88 90 95 96 99 100 103 105 110 113 114 120 121 123 125 127 130 135 137 139 141—144 151 153 156 164—166 169—171 177 182 187 191 198
von Neumann, J. 65
Wang's theorem 195
Weighted mean 114 128
Weights 24 65 96 114 119 128 138 143—145 177
Wilcoxon, F. 198
Yost, G.P. 63 97
Реклама