Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Bezrukavnikov R., Finkelberg M., Schechtman V. — Factorizable Sheaves And Quantum Groups
Bezrukavnikov R., Finkelberg M., Schechtman V. — Factorizable Sheaves And Quantum Groups



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Factorizable Sheaves And Quantum Groups

Авторы: Bezrukavnikov R., Finkelberg M., Schechtman V.

Аннотация:

The book is devoted to the geometrical construction of the representations of Lusztig's small quantum groups at roots of unity. These representations are realized as some spaces of vanishing cycles of perverse sheaves over configuration spaces. As an application, the bundles of conformal blocks over the moduli spaces of curves are studied. The book is intended for specialists in group representations and algebraic geometry.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1998

Количество страниц: 287

Добавлена в каталог: 29.11.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
A-curve      0.14.13
Adjacent facet      1.3.2
Adjoint representation      0.12.5 V.11.1
Admissible element $\nu\;\in{Y}^{+}$      0.8.4
Admissible element, (in ${\mathbb N}[{X}_{l}]$)      0.14.6
Admissible pair $(\overrightarrow{\mu},\alpha)$      IV.3.1 IV.9.1
Affine Lie algebra $\hat{g}$      0.10.6 IV.9.2
Antipode      0.2.10
Arrangement (real)      0.6.1 1.3.1
Associativity condition      0.3.6 0.4.3 0.7.3 0.7.7
Baby Verma module      0.2.17 III.13.8
balance      0.2.18
Balance function      IV.2.4
Base (of a tree)      III.7.2
Bbrt category      IV.9.2
Braiding      0.2.18
Braiding local system      0.3.5
Branch      III.7.2
Canonical map      0.6.6 1.3.11 II.7.10
Cartan datum      0.2.1
Cartesian functor      0.15.8
Chamber      1.3.1
Coaction      II.2.18
Cochain complex of an arrangement      1.3.13
Cocycle condition      0.8.5
Cohesive local system (CLS for short) $\mathcal H$ of level $\mu$, (over A)      III.8.4
Cohesive local system (CLS for short) $\mathcal H$ of level $\mu$, (over C/S)      0.14.4
Cohesive local system (CLS for short) $\mathcal H$ of level $\mu$, (over P)      0.7.7 IV.2.8
Compatible isomorphisms      V.6.2
Comultiplication      0.2.10
Concave complex      0.9.3 IV.4.2
Configuration space of colored points on the affine line      II.6.12
Conformal blocks      0.10.3 IV.5.10
Conic complex      1.2.13
Convex complex      0.9.3 IV.4.2
Convolution      V.15.3
Coorientation      1.4.6
Cutting      III.2.2 III.7.2
Deleting morphism      0.14.20
Depth      II.2.2
Determinant line bundle      0.14.1 V.2.2
Diagonal stratification      II.6.1
Dominant weight      III.18.2
dropping      III.2.2
Dual cell      1.3.2
Dualizing complex      1.2.5
Edge (of an arrangement)      0.6.1 1.3.1
Elementary tree      III.7.2
Enhanced disk operad      III.7.5
Enhanced graph      0.14.13
Enhanced tree      III.7.3
Enhancement      III.7.3
Face      1.3.1
Facet      0.6.1 1.3.1
Factorizable sheaf (supported at c)      0.4.3 III.4.2
Factorizable sheaf (supported at c), (finite, FFS for short)      0.4.6. III.5.1
Factorizable sheaf (supported at c), (over ${}^{K}{\mathcal A},\;{}^{K}{\mathcal I}$)      III.9.2
Factorization isomorphisms      0.3.5 0.4.3 0.7.3 0.7.7 V.2.2 V.16.6
First alcove      0.10.2
Flag      0.6.1 1.3.2
Fusion functor      V.18.2
Fusion structure      0.15.1
Fusion structure, (of multiplicative central charge c)      0.15.8 V.18.2
g-admissible element of ${\mathbb N}[{X}_{l}]$      V.2.1
g-admissible pair      V.16.2
g-positive m-tuple of weights      V.17.1
Generalized baby Verma module      III. 14.10
Generalized vanishing cycles of $\mathcal K$ at a facet F      1.3.3
Gluing      0.5.8 0.8.6 III.10.3 IV.3.5 V.16.6
Good ${A}_{0}$-tuple (w.r.t. $(g, \nu)$)      0.14.15 0.14.22
Good object (w.r.t. ${u}^{+}$ or ${u}^{-}$)      0.9.2
Good resolution (right or left)      0.9.4
Good stratification      1.2.9
Good surjection      IV.4.3
Half-monodromy      II.6.2 II.8.1
Height (of tree)      III.7.2
Heisenberg local system      0.14.11 V.2.2
Hochschild complex      II.3.1
Homogeneous element      II.2.2
i-cutting      III.2.3
I-sheaf      V.12.2
Level      0.7.7
Local system of conformal blocks      0.11.7 IV.9.2
Marked disk operad      III.7.7
Marked tree      III.7.6
Marking      1.3.2
Maximal trivial direct summand      0.10.1 IV.5.9
Modular functor      V.18.2
Multiplicative central charge      0.14.12
Nearby cycles      1.2.11
Neighbour (left)      II.6.2 II.8.1
Open I-colored configuration space      0.3.5
Operad of disks      III.7.3
Operad of disks with tangent vectors $\mathcal D$      0.7.2
Orientation sheaf perverse sheaf      0.2.4 1.2.9
Poincare groupoid      1.4.1
Positive facet      0.6.1. II.7.1
Positive flag      II.7.1
Positive m-tuple of weights      IV.8.3
Principal stratification      II.7.1 II.7.14 III.7.9 IV.3.2 V.16.3
Quantum commutator      II.2.20
Quantum group with divided powers      IV.6.1
Real arrangement      1.3.1
refinement      II.3.4
Regular object      0.16.1
Regular representation      0.12.3 V.10.1
Regular sheaf      0.13.3 V.14.2
Relative singular n-cell      1.2.7
Rhomb diagram      0.3.5
Ribbon category      0.2.23
Rigid object      III.15.3
Rigidity      IV.4.4
Root datum      0.2.1
Semiinfmite Ext, Tor      0.9.7 IV.4.7
Sewing morphism      0.14.20
Shape (of a tree)      III.7.2
Sign local system      0.3.9
Simple sewing      0.14.20
Skew-${\Sigma}_{\pi}$-equivariant morphism      II.6.12
Skew-antipode      0.2.10
Small quantum group ${\bf u}_{k}$      0.2.12
Small quantum group u      0.2.10
Standard braiding local system (over the configuration space ${\mathcal A}(2)°$)      0.5.6
Standard local system, 0.3.10, (X-colored, over $\mathcal D$)      0.7.5
Standard sheaves      1.4.5 III.6.1
Steinberg module      III.16
Steinberg sheaf      III. 16
Substitution isomorphism      III.7.3
Tensor product of categories      III.10.2
Tensor structure (rigid)      0.2.14
Thickness      III.7.2
Toric stratification      III.2.7 III.7.9
TREE      III.7.2
Two-sided Cech resolution      IV.8.5
Unfolding      0.3.1 II.6.12
Universal Heisenberg local system      0.14.18
Vanishing cycles      1.2.11
Vanishing cycles at the origin      0.6.7
Vanishing cycles of $\mathcal K$ across F      0.6.2
Variation map      0.6.6 1.3.11 II.7.10
Verma module      II.2.15
Weight      II.2.1
Weyl group      0.2.2 III.
X-colored local system over $\mathcal D$      0.7.3
Young tree      III.7.2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте