Авторизация
Поиск по указателям
Najim K., Ikonen E., Daoud A.-K. — Stochastic processes. Estimation, optimization and analysis
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Stochastic processes. Estimation, optimization and analysis
Авторы: Najim K., Ikonen E., Daoud A.-K.
Аннотация: For engineers dealing with stochastic processes and for students of automatic control and mechanical and electrical engineering, Najim (INP, Toulouse, France) Enso Ikonen (U. of Oulu, Finland) and Ait-Kadi Daoud (mechanical engineering, U. of Laval, Quebec) consider in turn stochastic processes, estimation, optimization, and the analysis of recursive stochastic algorithms to explain how to approach a variety of problems in applied probability and statistics. They emphasize the design of techniq ...
Язык:
Рубрика: Технология /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 2004
Количество страниц: 332
Добавлена в каталог: 13.10.2005
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Abel 321
Accuracy 178 253 255
Action probability distribution 174
Actions 174
Arrival counting process 64
atom 3
Backpropagation 144
Bayes 141 199
Bernoulli distribution 94 108
Beveridge — Nelson 18
Bias 138
Bienayme 24 154
Big-o 87
Binomial distribution 94 99 225 319
Blackwell Theorem 67
Boltzmann 212 213
Borel — Cantelli lemma 241 275 320
Borel, -algebra 13
Borel, function 14
Bush — Mosteller 179 181 185 278 279
Cauchy 42
Cauchy, distribution 105
Cauchy, sequence 82
Central limit theorem 101
Chapman — Kolmogorov equation 60
Characteristic function 35
chebyshev 133
Chernoff 201
Chi-squared distribution 154
Closed subset 53
Coefficient of correlation 23 31
Conditional mathematical expectation 27 28
Conditional probability 28
Confidence probability 196 199 201 203 204 207
Confidence probability, approximation 200
Conformity 153 155 156
Constraints 171 231
Convergence 231 254 261 288
Convergence rate 285 288 295 298
Convergence, almost surely 43 290 298
Convergence, in distribution 41 296
Convergence, in law 41
Convergence, in mean squares 43 240 293
Convergence, in probability 41 240
Convergence, in quadratic mean 43
Convergence, martingales 80
Convergence, with probability 1 43
Convex 34 76 87
Convolution 5 64 66 126
Covariance 22
Damping factor 171
De Morgan 2
Degrees of freedom 154 155
Differential equation 121
Discretization 178
Doob 75
Duflo 227
EA 214 (see “Evolutionary algorithms”)
Edgeworth 133
Eigenvalues 56 58
Eigenvectors 56 58
em 138 (see “Expectation Maximization”)
Encoding 215
Environment, binary 174
Environment, continuous 174
Environment, normalized response 182
Environment, P-model 174 179 203
Environment, response 174
Environment, S-model 174 179 189 203 225 254 263 270
Equality, almost surely 32
Equivalence relation 51
Ergodicity 18
Erlang distribution 111 117 148 153
Estimator, linear 30
Estimator, optimal 71
Event 3 12 28
Event, elementary 3 12
Evolutionary algorithms 214
Expectation 24
Expectation maximization 138 146
Expectation, conditional 27
Expectation, estimation 101
Exponential distribution 66 96 106 113
Exponential weighing 180
Fisher 154
Forgetting factor 264
Fourier transform 35
Fundamental matrix 53
GA 211 (see “Genetic algorithms”)
Galerkin 134
Gamma distribution 110 116 117
Gaussian 136 139
Gaussian, distribution 99 100 121 139 146 207
Gaussian, mixture 139
Generating function 36
Genetic algorithms 211 214 215
Geometric distribution 108
Gradient 289 301
Gradient, estimation 171
Greenwood and Nikulin 156
Grey coding 215
Hazard function 62 107 112
Helmert 154
hermite 133 134
Hybrid scheme 202 203 207 211
Hypergeometric distribution 95 319
I.o. 86
Identification 38
Inaction 176 179
Independence 39
Indicator function 10 28 243
Inequality, Bennett 236 237 319
Inequality, Boole 4
Inequality, Bunyakovsky — Schwartz 243
Inequality, Cauchy — Bounyakovsky 317
Inequality, Cauchy — Schwartz 254
Inequality, Chebyshev 240 241 243 304 318
Inequality, Cramer — Rao 138 305
Inequality, Edmundson — Madansky 34 244
Inequality, Hajek — Renyi 251 319
Inequality, Holder 315 317
Inequality, Jensen 76 244 278
Inequality, Kolmogorov 318
Inequality, Markov 318
Inequality, Minkovsky 316-317
Inequality, Schwartz 240 316
Inequality, submartingale 76
Inequality, triangle 155 315
Infinitely often 86
Infinum 84
Jointly stationary 17
Jordan decomposition 61
Kalman — Bucy 46
Kernel 134 139 140 148
Kernel, selection 140 148
Kiefer and Wolfowitz 168 229 232
Kolmogorov 6 148 156 250 324
Kolmogorov and Khinchin 248 250
kronecker 246 248 251
Kuhn — Tucker 172
kurtosis 117 140 147
Kushnerand Sanvicente 159
la 173 (see “Learning automata”)
Lagrange, function 159 171 228
Lagrange, multipliers 159 172 228
Laplace, distribution 104
Laplace, transform 35 66 115
Law of Large Numbers 18
Law of the iterated logarithm 325
Learning automata 173 189 254
Learning automata, team 270
Least squares method 22 137 154 231
Lebesgue 23 26—27
Lebesgue — Stieltjes (see “Lebesgue”) 27
legendre 133
Levenberg — Marquardt 145 149
Lifetime 64
Likelihood function 136 139
Likelihood function, log-likelihood 137
Likelihood function, negative log-likelihood 137 142 150
Limit of sequence 85
Lipschitz 178 253 290
Little-o 86
Lognormal distribution 102 127
Loss function 176 181 194 207
Lyapunov 226 270 280 281 291 297—299 323
Maintenance 188
Markov, aperiodic chain 55
Markov, chain 47 49 73 214
Markov, cyclic subclasses 57
Markov, diagram 50
Markov, ergodic chain 57
Markov, irreducible chain 53
Markov, periodic chain 54
Markov, probability transition matrix 48
Markov, property 17 47 51
Markov, return probability 54
Markov, stationary distribution 59
Markov, sub-chain 53
Markov, time 83
Markov, transition probability 48
Martingale 68 72
Martingale, difference sequence 83
Martingale, submartingale 69
Martingale, supermartingale 69
Maximum likelihood 136 139
McMurtry and Fu 180 224 255
Measurable 28
Memoryless 106 109
Metropolis 213
Mixing proportions 130
Mixture 135 148
Mixture density 130
Mixture, Gaussian 139
Model validation 153
Model-On-Demand 157
Moments 98 104 116 117 122 123 131 133
Moments, two random variables 22
Monte Carlo 141 214
Nadaraya 134
Nadaraya — Watson 134
Neural networks 143
Neural networks, one-hidden-layer sigmoid 144
Neveu 320
Newton binomial 94
Newton method 145 301
Nonstationary 17
Normal distribution 67 99 117 154 231 297 302 326
Normalization 181 197 198 202 203 273
Normalized excess 118
o 87
Observations 15
Optimal gain 301
Optimality 169
Ordinal optimization 200
Ordinary differential equation 232
Ordinary renewal process 67
Orthogonal 134
Orthogonal, sequence 37
Orthonormal 16 159
Parameter estimation 102
Partial sum 33 70
Parzen estimator 149
Passage probability 54
Pearson 123 154 155
Pearson distribution 154
Penalty 176 179 203
Penalty function 172
Penalty, function 184 228
Penalty, multipliers 184
Poisson, distribution 96 98 137 319
Poisson, process 17
Polyak and Juditsky 170
Population 214
Primitives 25
Probability density function 21
Probability density function, two random variables 22
probability distribution 20
Probability distribution, two random variables 22
Probability measure 13 174 204
Probability space 14
Projection 185 187 257 327
Pythagorean relation 82
Quantization 178
Random variable 14
Random variable, complex 127
Random variable, linear transformation 125
Random variable, measurable 15 27
Random variable, monotonic transformation 124
Random walk 15 18
Rayleigh distribution 109 113
Realization 15 16
Rectangular pulses 132
Regression 229
Regularized function 254 262
Regularizing factor 258
Reinforcement scheme 174
Reinforcement scheme, Bush — Mosteller 179
Reinforcement scheme, McMurtry — Fu 180 224 255
Reinforcement scheme, Shapiro — Narendra 179
Reinforcement scheme, Varashavskii — Vorontsova 225
Reliability 6 35 50 157 188
Reliability, function 62
Renewal, density 68
Renewal, equation 66
Renewal, function 65
Renewal, process 64 67
replacement 64 65 189 191
Representation 215 272
Reward 176 179 203
Riemann 25—27
Robbins and Monro 145 168 183 229 232 261
Robbins — Siegmund Theorem 228 249 253 275 280 284 292 323
Rosenblatt — Parzen 134 145
Ruppert — Polyak 302
Sa 211 (see “Simulated annealing”)
Sacks 296 325
Sample, mean 101
Sample, variance 101
SAT 168 (see “Stochastic approximation”)
Shapiro — Narendra 179 189 199 203 206
Sigma-algebra 12 13 27 174
Sigma-algebra, Borel 13
Sigma-algebra, increasing sequence 32
Sigmoid, function 144
Sigmoid, neural networks 143 144 149 202
Sigmoid, neural networks, gradients 144
simplex 182 185 257 327
Simulated annealing 211 212
skewness 117
SNN 143 (see “Sigmoid neural networks”)
Spectral decomposition 60
Stable distributions 37
State 46 50
State, absorbing 52 53
State, accessible 51
State, communicating 51 53
State, non-transient 53
State, null recurrent 54
State, positive recurrent 54
Реклама