| 
		        
			        |  |  
			        |  |  
					| Àâòîðèçàöèÿ |  
					|  |  
			        |  |  
			        | Ïîèñê ïî óêàçàòåëÿì |  
			        | 
 |  
			        |  |  
			        |  |  
			        |  |  
                    |  |  
			        |  |  
			        |  |  |  | 
		|  |  
                    | Stakgold I. — Boundary Value Problems of Mathematical Physics |  
                    |  |  
			        |  |  
                    | Ïðåäìåòíûé óêàçàòåëü |  
                    | | Addition theorem for cylindrical waves      268 Addition theorem for Legendre functions      398
 Addition theorem for spherical waves      290
 Adjoint      9 198
 Admissible functions      332
 Approximation in subspace      335—36
 Aronszajn, N.      382
 Asymptotic expansions for heat equation      206 222 236
 Asymptotic expansions of eigenvalues of Laplacian      231—34
 Asymptotic expansions of integrals      399—402
 Asymptotic expansions,      239—40
 Base operators      382
 Bazley, N.W.      382
 Bessel equation      242 268—70 295
 Biharmonic equation      40 105 365
 Boundary conditions, essential      353
 Boundary conditions, natural      352—55
 Boundary value problem      88
 Boundary value problem, well-posed      89
 Capacity      171—74 350—52
 Cauchy data      74
 Cauchy problem      73
 Causal function      (see “Right-sided function”)
 Causal fundamental solution      (see “Fundamental solution”)
 Characteristic      74
 Characteristic of wave equation      46
 Characteristic, surface      74
 Classification of partial differential equations      73—87
 Comparison theorem      377
 Composite medium      183 234—293
 Conductor      171—83
 Consistency condition      171
 continuous dependence on data      89 91
 Continuous dependence on data,      95 102—103 226
 Convolution      18—20 49
 Cylindrical wave      267—68
 Damped wave equation      65—69 257—59
 Damped wave equation,      264
 Delta function      5 20 27 34
 Descent, method of      255
 Diaz, J.      344
 Difference kernel      311
 Diffraction      (see “Scattering”)
 Diffusion      230 240—41 329
 Dipole      6 111 201
 Dipole layer      12 113
 Dirac      5
 Dirac of slow growth      31 37
 Dirac, direct product of      17
 Dirac, partial differential equations for      39
 Dirac, product of functions and      7
 Dirac, regular      5
 Dirac, singular      5
 Dirac, translation of      5
 Dirac, values of      9
 Dirichlet problem      90—103 122—25 135 142 172 296 348
 Dissipative wave equation      (see “Damped wave equation”)
 Distributions, action of      4
 Distributions, convergence of      10—16
 Distributions, convolution of      18
 Distributions, definition of      4 31 37
 Distributions, differentiation of      7
 Distributions, dipole      6 8
 Divergence theorem      89
 D’Alembert’s formula      85
 Eigenfunction expansion for heat-conduction equation      213—18
 Eigenfunction expansion for Laplace’s equation      153—64
 Eigenfunction expansion for wave equation      248 252
 Eigenvalues of negative Laplacian      136—42
 Eigenvalues, asymptotic distribution of      231 239—40
 Eigenvalues, comparison theorem for      377
 Eigenvalues, extremal principles for      369—92
 Eigenvalues, lower bounds to      381—92
 Elliptic equations      80
 Energy flux      262 303
 Energy inner product      342
 Energy integral for heat conduction      225
 Energy integral for wave equation      244 261—62
 Energy norm      343
 Entire functions      315
 Extremal principles for capacity      350—52
 Extremal principles for eigenvalues in Hilbert space      372
 Extremal principles for eigenvalues in n space      369—72
 Extremal principles for functionals      337 40 352—55 358-361
 Extremal principles for torsional rigidity      346—48
 Extremal principles,      392
 Extremal principles, complementary      344—52
 Fluid flow      185—90
 Fokker — Planck equation      230
 Fourier integral theorem      23
 Fourier transforms and Wiener — Hopf equations      311—31
 Fourier transforms of distributions      30—39
 Fourier transforms of functions      23
 Fourier transforms of test function      31
 Fox, D. W.      382
 Free boundary      237
 Friedrichs, K. O.      344
 Functionals      3 332
 Functionals, continuity of      3
 Fundamental solution      48
 Fundamental solution of damped wave equation      65—69
 Fundamental solution of heat-conduction equation      58—60
 Fundamental solution of Helmholtz’s equation      53—58 266-267
 Fundamental solution of Laplace’s equation      49—53
 Fundamental solution of wave equation      61—65 249 253—56
 Fundamental solution, on Riemann surface      270—72
 Fundamental solution, pole of      48
 Generalized functions      (see “Distributions”)
 Generalized solution      42 (see also “Fundamental solution”)
 Green’s function; see also Fundamental for heat conduction      198 204 209—18
 Green’s function; see also Fundamental for Helmholtz’s equation      265—90
 Green’s function; see also Fundamental for Laplace’s equation      130—71
 Green’s function; see also Fundamental for wave equation      246—52
 Green’s Theorem      40 89
 Hadamard, J.      255
 Hankel functions      (see “Bessel equation”)
 Hankel transform      275—80
 Harmonic functions, maximum principle for      101
 Harmonic functions, mean value theorem for      99
 Heat-conduction equation      81 194—243
 Heat-conduction equation,      280—81
 Heat-conduction equation, backward      229
 Heat-conduction equation, causal fundamental solution      58—60
 Heat-conduction equation, causal Green’s function for      197—222
 Heat-conduction equation, energy integral for      223
 Heat-conduction equation, Green’s theorem for      41 196
 Heat-conduction equation, ill-posed problems for      229
 Heat-conduction equation, in composite medium      234—37
 Heat-conduction equation, maximum principle for      224—25
 Heat-conduction equation, Stefan problem for      237—38
 Heat-conduction equation, uniqueness for      225—26
 Helmholtz’s equation, fundamental solution of      53—58
 Helmholtz’s equation, Green’s function for      265—85
 Helmholtz’s equation, half-plane problem for      281—90 321—27
 Helmholtz’s equation, in exterior domain      294—311
 Helmholtz’s equation, in wedge      272—73
 Helmholtz’s equation, mean value property      105
 Hilbert — Schmidt kernels      135 375
 Huyghens’ principle      256
 Hyperbolic equations      80—85
 Images      149 166—69 204 209 211 251
 Images,      252
 Incident field      299
 Initial data      72
 
 | Initial value problem      73 Integral equations for capacity      172—74 351
 Integral equations for scattering problems      301
 Integral equations of potential theory      122—30 146 171
 Integral equations of Wiener — Hopf type      311—31
 Integral equations with difference kernel      311—31
 Integral equations,      193
 Integrodifferential equation      366—67 389-390
 Interior operator      74
 Intermediate problems      382
 Jones, D. S.      368
 Kantorovich — Lebedev transform      273
 Kirchhoif s formula      263
 Klein — Gordon equation      70
 Laplace’s equation      40 49—53 88—192
 Laplace’s equation, eigenvalue problem for      136—42 231
 Laplace’s equation, exterior Dirichlet problem for      123 129 142
 Laplace’s equation, fundamental solution of      49—53
 Laplace’s equation, Green’s function for      130—71
 Laplace’s equation, Green’s theorem for      40
 Laplace’s equation, interior Dirichlet problem for      122 128
 Least squares      361—63
 Left-side function      28
 Legendre functions      393—98
 Levine, H.      283 311 340 357
 Limiting absorption      259—61
 Locally integrable      2
 Macdonald function      266 279 321
 Mapping function      164
 Maximin theorem      371
 Mehler’s integral representation      284
 Mellin transform      167 169
 Minimax theorem      371
 Monochromatic excitation      259—61
 Multiindex      2
 Neumann problem      126 128 171 185
 Neumann problem and fluid flow      185—91
 Neumann problem for      126 128
 Neumann problem for, double      12 113
 Neumann problem for, in two dimensions      128
 Neumann problem for, Laplace transform      38 206 218 236
 Neumann problem for, simple      7 39 112
 Neumann problem for, surface      7 12 110—121
 Neumann problem, consistency condition for      171
 Neumann problem, extremal principles for      363—64
 Null sequences      3 30 36
 One-sided functions      28
 Operators, base      382
 Operators, bounded above      372
 Operators, bounded below      372
 Operators, completely continuous      133—35 375
 Operators, Hilbert — Schmidt      135 375
 Operators, indefinite      355—57
 Operators, integrodifferential      366 389—90
 Operators, interior      74
 Operators, nonnegative      336
 Operators, nonsymmetric      355—57
 Operators, positive      337 358
 Operators, self-adjoint      9 376
 Operators, semibounded      372
 Operators, strongly positive      343 363
 Operators, symmetric      337
 Parabolic equations      80
 Parseval formula      24
 Partial differential equations      88—311
 Partial differential equations for distributions      39—48
 Partial differential equations of first order      76—79
 Partial differential equations of second order      79—87
 Partial differential equations, classification of      73—87
 Partial differential equations, elliptic      80
 Partial differential equations, fundamental solutions of      48—72
 Partial differential equations, hyperbolic      80
 Partial differential equations, parabolic      80
 Plane wave      285—86 302
 Poisson equation      103 345
 Poisson kernel      95
 Poisson sum formula      212
 Pole of fundamental solution      48
 Potential theory      88—193 267
 Projection operator      335—36
 Propagation of discontinuities      46 77
 Radiation condition      297
 Rayleigh quotient      369
 Reciprocity principle      303 342 368
 Rellich, F.      297
 Retarded potential      254
 Riemann mapping theorem      164
 Riemann surface      270
 Right-side function      28
 Ritz — Rayleigh, equations      341 363 366—68
 Ritz — Rayleigh, procedure      332 334 340—43 362 377-378
 Scattered amplitude      304
 Scattered field      300
 Scattering      299—311 328
 Scattering cross section      303
 Scattering cross section, stationary principle for      309
 Schwarz constants      380
 Schwarz inequality      344
 Schwinger — Levine principle      311 340 357
 Self-adjoint      9 376
 Semigroups of operators      227
 Slow growth, distribution of      31 37
 Slow growth, functions of      29
 Sokolnikoff, I.S.      346
 Sommerfeld, A.      277 297
 Spherical harmonics      109 126 127 144
 Spherical harmonics,      290 295 393—98
 Spherical wave      267 290
 Stationary principles for indefinite operators      356
 Stationary principles for nonsymmetric operators      357 367—368
 Stationary principles for scattering cross section      309—11
 Steady heat conduction      88 183
 Stefan Problem      237
 Strict solution      42
 Support      2
 Symbolic functions      (see Distributions)
 Tangential derivative      74
 Telegraphy equation      65 258
 Test functions      3
 Test functions of rapid decay      30 36
 Test functions, convergence of      3 30
 Test functions, null sequences of      3 30 36
 Theta function      212
 Torsional rigidity      346—48
 Transversal      41
 Uniqueness theorem for heat conduction      225—26
 Uniqueness theorem for Helmholtz’s equation      296—99
 Uniqueness theorem for Laplace’s equation      102
 Uniqueness theorem for wave equation      243
 Variation-iteiation      380—81
 Variational methods      (see Extremal principles and Stationary principles)
 Wave equation      81 194 196—97 243—65
 Wave equation, damped      65—69 257—59 264
 Wave equation, d’Alembert’s solution of      85
 Wave equation, fundamental solution of      61—65
 Wave equation, generalized solution of      44
 Wave equation, Green’s function of      246—56
 Wave equation, Green’s theorem for      41 47 197
 Wave equation, in composite medium      293
 Wave equation, method of descent for      255—56
 Wave guide      291
 Weber transform      242
 Weinstein, A.      382
 Well-posed problem      89
 Wiener — Hopf equation      311—31
 
 | 
 |  |  |  | Ðåêëàìà |  |  |  |  |  |