|
 |
Àâòîðèçàöèÿ |
|
 |
Ïîèñê ïî óêàçàòåëÿì |
|
 |
|
 |
|
 |
 |
|
 |
|
Bow S.-T. — Pattern recognition and image preprocessing |
|
 |
Ïðåäìåòíûé óêàçàòåëü |
functions 52
machines 52—54
space 52
A posteriori probability 83
a priori probability 83—85
Absolute correction rule 67 69—71
ADALINE 46 201
Adaptive decision procedure 17
Adjoint 99 616
Agglomerative approach 114
Aperture 424—431
Aperture function 423—424
Approximations 492 499—500
Approximations, successive approximation 494
Area of high activity 302
Area of low activity 302
Artificial neural networks (ANN) 197—199
Augmented feature space 38
Augmented pattern vector 35 39
Augmented weight vector 35
Autocorrelation 416
Average cost 83
Average risk 83
Bachelor and Wilkins, algorithm 119—121
Back-propagation algorithm 211—219
Back-propagation algorithm, flowchart for 220
Basic events 188
Basic events, basic event generation algorithm 188—190
Bayes decision boundary 98 106
Bayes decision surface 106 109
Bayes discriminant function 85—86
Bayes' classifier 86
Bayes' law (rule) 85—86 91
Bit reversal 448—449
Blurring 238—239 302
Butterworth filter 469—473
Canonical analysis 172
Capacity of a machine 54—57
Carpenter — Grossberg classifier 198—199
cell 12
Cell, acidophilic 12
Cell, cosinophilic 12
Chain cluster 157
Chain code 374—375
Character recognition 24
Classification 18
Classification space 8
Classifier 20 23
Closing operation 342—343
Cluster 32
Cluster center 117—118 132—138
Cluster domain 129—139 145
Clustering analysis 112
Clustering method, evaluation of the cluster methods 145
Clustering transformation 170
Cofactor 615
Collinear string 516
Committees machines 46
Committees machines, training procedure for committee machines 74
Compass gradient mask 307
Concept of saliency of a boundary segment 394
Conceptual recognition 5
Conditional average loss 83
Conditional average risk 83 85
Connected component generation 514
Connected graph 149
Connectionist model 197
Connectivity 343
Contour map 24
Contour tracing 344—345
Convex decision surface 43
Convexity 43
Convolution 306 336 401 416—419 587—589
Convolution integral 587—589
Convolution theorem 419
Cooccurrence matrix 352—354
Correlation 416—419
Correlation method 24 416—419
Cost function 31
Covariance 33 180
Covariance matrix 97
Covariance matrix, between-class covariance matrix 184
Covariance matrix, within-class covariance matrix 184
Criterion function: perceptron criterion function 73
Criterion function: relaxation criterion function 74
Cross-correlation 416
Cumulative density function 286—288
Cumulative distribution 286—288
Cumulative histogram 286—288
Curve fitting 374
Curve fitting, B-spline 374 377—378
Curve fitting, concatenated arc approximation 374 385—392
Curve fitting, piecewise polynomial 374
Curve fitting, polygonal approximation 374—376
Curve fitting, polynomial 374—376
Data: acquisitions 9
Data: preprocessing 10 18
Data: reduction 10
Decimation 492
Decision boundary 91
Decision classification 20
Decision classifier 19
Decision function 19 57
Decision processor 17 19
Decision processor, training of decision processor 17 19
Decision surface 33—36 39—40 51 61
Decision theoretical approach 35 37
Degree of similarity 143 146
Delaunay method 366 372
details 492
Deterministic function 34
Deterministic gray-level transformation 271
Diagonal matrix 173 176 467
Dichotomies 52 56
Dichotomies, probability of dichotomies 55
Dichotomization 54
Dichotomization, capacity of dichotomization 57
Differential operators 590—591
Digital image processing 268
Digital implementation of DWT 496
Dilation 336—339
Dimensionality reduction 172
Dirac delta function 405 584—586
Discrete Fourier Transform 401 403 422 441—447
Discrete Karhunen — Loeve transform 466—468
Discriminant functions 33—39 42 48—49 52 57 88 96
Discriminant functions, nonparametric training of discriminant function 62
dispersion 140
Dissimilarity measure 113
Distance function 20
Distance measure 118—119 138—144
Distance metrics 20
Divisive approach 114
Document image analysis 513—523
Downsampling 492—493 495
Dynamic cluster method 142—144
Dynamic optimal cluster seeking technique (DYNOC) 141—142
Ecology 31
EDGE 149 158
Edge sharpening 303—330
Edge weight plots 152—153
Eigenvalues 51—52 94 162 175—176 468 621—623
Eigenvectors 52 467
Energy spectrum 407
Erosion 339—341
Error-correcting training methods 66 76
Euclidean distance 113
Euclidean distance, classifier 38
Euclidean distance, of unknown pattern from class center 38
Euclidean space 20 62
| Expected value 92
Exponential filter 469—471
Fast Fourier Transform 401 437 446—453
Fast Walsh transform 459
Feature extraction 8 10 14 18
Feature ordering 11 170
Feature selection 168 188
Feature space 8 18—20 168
Feature subset 188—189
Feature vector 11 14 17 20 32
Feature weighting coefficients 170—171
features 10—11 30
Features, derived feature 15
Features, global feature 11
Features, local feature 11
Filter 469—471
Filter banks 490 492—493
Filter, Highpass 469—471
Filter, Lowpass 469—471
Finite differences 593—595
Fisher's criterion function 185
Fisher's determinant 182 187
Fixed increment rule 67 71
flops 563
Forward transform 405—496
Forward transform kernel 405—410
Fourier coefficient 483
Fourier descriptor 380—384
Fourier spectrum 407—417 424—440 482
Fourier transform 404—454
Fourier transform, Fourier transform pair 404—419
Fourier transform, windowed Fourier transform 482
Fractional correction rule 68—71
Frame grabbing time 596
Frequency domain 420
Frequency spectrum 407—417 424—440
Functional approximation 101
Fuzzy decision 199
Fuzzy membership function 113
Gabriel graph 157—161
Gaussian distribution 82
Generalized decision function 55—56
Generalized inverse 77
Generalized likelihood ratio 87
Generalized threshold value 87
Gradient 304
Gradient descent technique 72
Gradient technique 72
Grammatical inference 22
Graph theoretical method 146
Graphics description 513—517
Graphics understanding 517
Gray level distribution 103
Gray level transformation 271—295
Gray level transformation functions 272
Gray level transformation matrix 296
Gray-tone run length 352
Ground truth 103
Hadamard matrix 460
Hadamard transform 459—466 481
Hadamard transformation pair 462
Hamming distance 237
Hamming net 198—199 236—240
Hamming net classifier, algorithm for 238—246
Hamming net, example 241—246
Hard limiter 201
Hermite polynomials 101
Heuristic approach 114 117
Hidden layer 206—207
Hierarchical clustering algorithm 121—128
High-pass filtering 471—473
High-pass filtering, Butterworth 471—473
High-pass filtering, exponential 471—473
High-pass filtering, ideal 471—473
High-pass filtering, trapezoidal 471—473
histogram 103—106
Histogram equalization 288—290
Histogram modification 278 287
Histogram specification 291 295
Histogram thinning 295—298
Ho — Kashyap algorithm 77—78
Homogeneous coordinates 600—601
Hopfield net 198—199 256—261
Hopfield net, architecture of the Hopfield net 257
Hopfield net, operation of Hopfield net 261—265
Hough transform 346—348
Hyperplane 34 36 63—64 69
Identification of: industrial parts with x-ray 542—545
Identification of: partially obscured objects 392—399
Identification of: scratches and cracks on polished crystal blanks 534—542
Identification of: scratches and cracks on unpolished crystal blanks 530—535
Identity matrix 51 175 460
ideographs 22
Image: acquisition 8
Image: cytological 12
Image: data preprocessing 8
Image: display 8
Image: enhancement 271 473—476
Image: function 271 303 412 441 453 581—582
Image: information content 440
Image: inverse transform 401
Image: model 402—403 579
Image: plane 600—601 607
Image: processing 402
Image: segmentation 8
Image: spectrum 401
Image: transform 401 403
Impulse 421
Impulse sheet 422
Indeterminate region 45—46
Inertia function 113
Interconnection networks 566—571
Interconnection networks, MIMD 566
Interconnection networks, SIMD 566
Interpolation 494
Intersample distance 146
Intersection 112
Interset distance 32 115
Intraset distance 32 115—116
Inverse fast Fourier transform 401
Inverse Fourier transform 411 422
Inverse Hadamard transform 462
Inverse transform 407—408 419 441
Inverse transform kernel 405 441
Inverse Walsh transform 455
ISODATA algorithm 131—139
ISODATA algorithm modification of ISODATA 139—141
K-means algorithm 129—131
k-nearest neighbor decision rule 121—128
k-nearest neighbor decision rule, definition of and 127
k-nearest neighbor decision rule, definition of 123—124
k-nearest neighbor decision rule, definition of 125
k-nearest neighbor decision rule, definition of 125
k-nearest neighbor decision rule, definition of 125—127
k-nearest neighbor decision rule, definition of 125—127
k-nearest neighbor decision rule, definition of and 126
k-nearest neighbor decision rule, definition of 123—124
k-nearest neighbor decision rule, definition of 123—124
k-nearest neighbor decision rule, definition of SIM(m, n) 125—127
Karhunen — Loeve method 24
Kernel: forward transform 441—442
Kernel: Fourier transform 405
Kernel: Hadamard transformation 459—166
Kernel: inverse transform 441
Kernel: separability 409—410
Kernel: Walsh inverse transformation 455
Kernel: Walsh transformation 454—459
Kirsch edge detector 312 325
Kohonen self-organizing feature maps 198—199 246—151
Kohonen, SOFM algorithm 251—252
|
|
 |
Ðåêëàìà |
 |
|
|