Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Ross S. — A First Course in Probability
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: A First Course in Probability
Àâòîð: Ross S.
Àííîòàöèÿ: This market leader is written as an elementary introduction to the mathematical theory of probability for readers in mathematics, engineering, and the sciences who possess the prerequisite knowledge of elementary calculus. A major thrust of the Fifth Edition has been to make the book more accessible to today's readers. The exercise sets have been revised to include more simple, "mechanical" problems and new section of Self-test Problems, with fully worked out solutions, conclude each chapter. In addition many new applications have been added to demonstrate the importance of probability in real situations. A software diskette, packaged with each copy of the book, provides an easy to use tool to derive probabilities for binomial, Poisson, and normal random variables. It also illustrates and explores the central limit theorem, works with the strong law of large numbers, and more.
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Èçäàíèå: Fifth edition
Ãîä èçäàíèÿ: 1998
Êîëè÷åñòâî ñòðàíèö: 514
Äîáàâëåíà â êàòàëîã: 30.03.2008
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Antithetic variables 465—466
Associative laws for events 27
Axioms of probability 30—31
Axioms of surprise 437
Ballot problem 121
Banach match problem 165—166
Basic principle of counting 2
Basic principle of counting, generalized 3
Bayes’ formula 79
Bernoulli random variable 144
Bernoulli trials 120
Bernoulli, Daniel 315
Bernoulli, Jacob see “James Bernoulli”
Bernoulli, James 93 398
Bernoulli, Nicholas 398
Bertrand’s paradox 203—204
Beta distribution 226 240 285
Binary symmetric channel 445
Binomial coefficients 8
Binomial random variable 144—145 150 172 185; 335—336 426
Binomial random variable, approximation to hypergeometric 168—169
Binomial random variable, computing its distribution function 152
Binomial random variable, randomly chosen success probability 346—347 363
Binomial random variable, simulation of 463—464
Binomial random variable, sums of independent 271 360—361
Binomial theorem 8
Birthday problem 40—41 157—158
Bivariate normal distribution 303—304 354 389—390
Bonferroni’s inequality 63 393
Boole’s inequality 66 312
Borel 411
Box — Muller 460
Branching process 390—391
Bridge 40
Buffon’s needle probem 255—236 300
Cauchy distribution 225 305
Cauchy distribution, standard 243
Cauchy — Schwarz inequality 387—388
Central limit theorem 204—205 399
Central limit theorem, for independent random variables 406
Channel capacity 449—450
Chapman — Kolmogorov equations 433
Chebyshev’s inequality 396
Chebyshev’s inequality, one-sided version 412—414
Chernoff bounds 415—417
Chi-squared distribution 267—268 361—362 367—368
Chi-squared distribution, relation to gamma distribution 267 284 301
Chi-squared distribution, simulation of 462
Coding theory 441—446
Combinations 6
Combinatorial analysis 2
Commulative laws for events 27
Complementary events 27 53
Complete graph 95
Conditional covariance formula 387
Conditional distribution 272 273
Conditional expectation 335 336 337
Conditional expectation, use in prediction 350—354
Conditional expectation, use in simulation 466
Conditional probability 67—68
Conditional probability distribution function 272 274
Conditional probability mass function 272 292
Conditional probability, as a long run relative frequency 72
Conditional probability, as a probability function 96—98
Conditional probability, density function 273—274 275 292
Conditional variance 348
Conditional variance formula 348
Conditionally independent events 102
Continuity property of probability 48—49 87
Continuous random variables 192
Control variates 468
Convex function 417
Convolution 265
Correlation 332—333
Correlation coefficient see “Correlation”
Coupon collecting problems 129—131 315—316 386
Covariance 326—327 388
Craps 58
Cumulative distribution function 131 171
Cumulative distribution function, properties of 132—133
DeMere 89
DeMoivre 204 212 214—215 401
DeMoivre — Laplace limit theorem 212
DeMorgan’s laws 28—29
Dependent events 84
Dependent random variables 253
Deviations 328
Discrete random variables 134 171
Discrete uniform random variable 241—242
Distribution function see “Cumulative distribution function”
Distributive laws for events 27
Dominant gene 112
Double exponential distribution see “Laplacian distribution”
Ehrenfest urn model 432 436
entropy 439
Entropy, relation to coding theory 441
Ergodic Markov chain 434—435
Erlang distribution 224
Event 26
Exchangeable random variables 288—291 292
Expectation 136—137 171 185 309 368—370 384—385 388
Expectation, as a center of gravity 138—139
Expectation, of a beta random variable 227
Expectation, of a binomial random variable 149—150 313
Expectation, of a continuous random variable 195—196
Expectation, of a function of a random variable 139—140 310
Expectation, of a gamma random variable 224
Expectation, of a geometric random variable 163
Expectation, of a hypergeometric random variable 169—170 313—314
Expectation, of a negative binomial random variable 166 313
Expectation, of a nonnegative random variable 197
Expectation, of a normal random variable 206
Expectation, of a Poisson random variable 156
Expectation, of a sum of a random number of random variable 339—340
Expectation, of a uniform random variable 201
Expectation, of an exponential random variable 216
Expectation, of number of matches 314—315
Expectation, of sums of random variables 310—325
Expectation, tables of 359 360
Expected value see “Expectation”
Exponential random variable 215 239 430
Exponential random variable, relation to, half-life, simulation of 456
Exponential random variable, sums of 267 286—288
Failure rate see “Hazard rate”
Fermat 89—90 93
Fermat’s combinatorial identity 21
First moment see “Mean”
Frequency interpretation of probability 30
Galton 407
Gambler’s ruin problem 90—93 120
Game theory 177
Gamma function 222—223 227 239
Gamma random variable 222 239 266—267 284—285 302—303
Gamma random variable, relation to chi-squared distribution 224 267 301
Gamma random variable, relation to exponential random variables 267
Gamma random variable, relation to Poisson process 223—224
Gamma random variable, simulation of 456
Gauss 214 215
Genetics 112 114 117
Geometric random variable 162 163 187 191
Geometric random variable, simulation of 463
Geometrical probability 203
Half-life 261—263
Hamiltonian permuation 323—324
Hazard rate 220—221 301
Huygens 89 93
Hypergeometric random variable 167 172 336
Hypergeometric random variable, relation to binomial 168—169 170
Importance sampling 471—472
Independent events 83—86
Independent increments 428
Independent random variables 252—253 257—258 259 263—264 292 301
information 439
Inheritance, theory of 147
Intersection of events 26 27 53
Inverse transform method of simulation 455
Jensen’s Inequality 418
Joint cumulative probability distribution function 244 251 291
Joint moment generating function 364
Joint probability density function 247—248 251—252 291
Jointly continuous random variables 247 251 291
k-of-n system 113
Keno 183—184
Khintchine 398
Kolmogorov 411
Laplace 204 212 401 407
Laplace distribution 219
Laplace’s rule of succession 102—103 122 123
Law of Large Numbers 395
Legendre theorem 240
Liapounoff 401
Limit of events 48
Linear prediction 353—354 389 390
Lognormal distribution 240 392
Marginal distribution 245 246
Markov chains 431—436
Markov’s inequality 395
Matching problem 44—45 63 100—101
Maximum likelihood estimates 168
Mean of a random variable 142
Median of a random variable 238—239
Memoryless random variable 217 218
Mendel 147
Midrange 304
Mode of a random variable 239
Moment generating function 355 358—359 392
Moment generating function, of a binomial random variable 356
Moment generating function, of a normal random variable 357—358
Moment generating function, of a Poisson rjandom variable 356—357
Moment generating function, of a sum of a random number of random variables 362—263
Moment generating function, of an exponential random variable 357
Moment generating function, tables for 359 360
Multinomial coefficients 11—12
Multinomial distribution 252 334—335
Multinomial theorem 12
Multiplication rule of probability 71
Multivariate normal distribution 365—366 392
Mutually exclusive events 27 53
Negative binomial random variable 164—165 172
Negative binomial random variable, relation to binomial 187
Negative binomial random variable, relation to geometric 165 301
Noiseless coding theorem 443
Noisy coding theorem 446
Normal random variable 204 282—284 364
Normal random variable, approximation to binomial 212
Normal random variable, characterization of 256—257
Normal random variable, joint distribution of sample mean and sample variance 366—368
Normal random variable, moments of 391
Normal random variable, simulation of 458—462
Normal random variable, sums of independent 268—269 292 361
Normal random variable, table for 208
Null set 54
Odds ratio 77—78
Order statistics 276—277 278 290—291 292
Paradox problem 50—52
Parallel system 87
PARETO 171
Partition 62
Pascal 89—90
Pascal random variable see “Negative binomial random variable”
Pearson, Karl 214 215
Permutation 3—5
Personal probability 52—53
poisson 154
Poisson process 159—161 428—431
Poisson random variable 154 172 186 187 253—255 273 302—303 330 365 393 404 425
Poisson random variable, as an approximation 154—155 156—158 418—420
Poisson random variable, computing its distribution function 161—162
Poisson random variable, simulation of 464
Poisson random variable, sums of independent 270—271 292 361
Poker 39
Poker dice 57
Polya’s urn model 289—290
Prize problem 344—346
Probabilistic method 95—96
Probability density function 192
Probability density function, relation to cumulative distribution function 195
Probability mass function 134 171
Probability mass function, relation to cumulative distribution function 135
Problem of the points 80—90 165
Quadratic prediction 389
Quicksort algorithm 320—322
Random number 393 453
Random permuation 453—454 469
Random subset 259—261 454—455
Random variable 126 171
Random walk 318—320 433—434
Range of a random sample 279—280
Rayleigh density function 221 283
Record values 386
Rejection method of simulation 456—458
Relative frequency definition of probability 30
Riemann hypothesis 174
Riemann zeta function 171
Round robin tournament 122
runs 46—48 64 99—100 317—318
Sample mean 311—312 328 333—334
Sample mean, joint distribution of sample mean and sample variance 366—368
Sample median 278—279 304
Sample space 25 53
Sample variance 328—329
Sampling from a finite population 330—332
Sampling with replacement 58
Sequential drug test 93
Shannon 446
Signal processing 352—353
Signal to noise ratio 424
Simulation 453
St. Petersburg paradox 178
Standard deviation 144 172 424
Standard normal random variable 207 238
Standard normal random variable, distribution function 207
Standard normal random variable, distribution function, inequalities for 211
Stationary increments 428
Stieltjes integral 368—369
Stirling’s approximation 151
Stochastically larger 385
Strong Law of Large Numbers 407—408
Strong law of large numbers, proof of 408—410
Subjective probability see “Personal probability”
Sum of ranks 377—378
Surprise 436—438
Trials 86
Triangular distribution 266
Uncertainty 439 440
Uncorrelated random variables 333
Uniform random variable 200—201 240 343—344 373 381
Union of events 26 27 53
Unit normal random variable see “Standard normal random variable”
Variance 142—143 171 200 238
Variance, as a moment of inertia 144
Variance, of a binomial random variable 149—150 329
Variance, of a gamma random variable 224
Variance, of a geometric random variable 164 342—343
Variance, of a hypergeometric random variable 169—170 332
Variance, of a negative binomial random variable 166
Variance, of a normal random variable 206
Variance, of a Poisson random variable 156
Variance, of a sum of a random number of random variables 349
Variance, of a uniform random variable 202
Ðåêëàìà