Авторизация
Поиск по указателям
Bharucha-Reid A.T. — Elements of the Theory of Markov Processes and Their Applications
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Elements of the Theory of Markov Processes and Their Applications
Автор: Bharucha-Reid A.T.
Аннотация: "My purpose in this book is twofold: first, to present a nonmeasure-theoretic introduction to Markov processes, and second, to give a formal treatment of mathematical models based on this theory which have been employed in various fields. Since the main emphasis is on applications, this book is intended as a text and reference in applied probability theory.
The book is divided into three parts: Part I, Theory; Part II, Applications; and Appendixes. Part I consists of three chapters which are respectively devoted to processes discrete in space and time, processes discrete in space and continuous in time, and processes continuous in space and time (diffusion processes). In the first two chapters we restrict our attention to Markov chains with a denumerable number of states, with particular reference to branching stochastic processes. The reader interested in chains with a finite number of states should consult, for example, the books of Doob, Feller, Frechet, Kemeny and Snell, and Romonovskii..." A.T.Bharucha-Reid
Язык:
Рубрика: Математика /
Серия: Сделано в холле
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1997
Количество страниц: 491
Добавлена в каталог: 04.12.2010
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Absolute probability 13
Absorbing barrier process 145—147
Absorption probabilities 17 18 52 152 153
Ackoff, R.L. 434 456
Agarwal, S. 213
Age distribution of populations 188
Age-dependent branching processes see "Bellman — Harris process" "Waugh
Agekyan, T.A. 346 357
Albert, G.E. 308 331
Approximating systems for stochastic epidemics 209 210
Arley, N. 5 118 124 231 248 289
Armitage, P. 124 193 196 230
Arnoff, E.L. 434 456
Arrival times 375
Arrow, K. 434
Ashcroft, H. 404 414 416 434
Austin, D.G. 124
Backward Kolmogorov diffusion equation 132
Bailey, N.T.J. 85n. 124 199 201—203 207 212 230 382 383n. 425 434
Balking distribution 429
Bartholomay, A.F. 230 360—362 372 455 456
Bartlett — McKendrick epidemic process 204—208
Bartlett — McKendrick epidemic process in cascade theory 288
Bartlett — McKendrick epidemic process in epidemic theory 211 212
Bartlett — McKendrick epidemic process in mutation theory 196—198
Bartlett — McKendrick epidemic process in nuclear emulsion research 318
Bartlett — McKendrick epidemic process in population growth 186—189
Bartlett — McKendrick epidemic process, limit theorems for 115—117
Bartlett — McKendrick epidemic process, moments of 96—97
Bartlett, M.S. 5 41 53 198 199 211 230 264 289 434 452 455 456
Bass, L. 289
Bateman, H. 296 331
Bay, Z. 331
Beach, L.A. 455
Bekessy, A. 331
Belenkif, S.Z. 289 294
Bellman, E. 38n. 53 65 67n. 70 95 97 98 100 111 118 124 187 188 303n. 331
Benes, V.E. 393 434
Benson, F. 411n. 434
Berger, M.J. 455
Bernstein, I.B. 289
Bethe, H. 239n. 289
Bhabha, H.J. 236 238 246 247 249 256 289
Bharucha-Reid, A.T. 52n. 53 100n. 123n. 124n. 125 128 211n. 230 289 294 372
Birth process 77—82
Birth process from Bellman — Harris process 98 99
Birth process in chemistry 360 361
Birth process in population migration 185—186
Birth process, deterministic 2 170
Birth process, diffusion equation representation of 190—192
Birth process, dishonest 81
Birth process, linear 77—80
Birth process, non-Markovian 99
Birth process, nonhomogeneous see "Polya process"
Birth process, nonlinear 77n.
Birth process, simple 77—80
Birth, death, and immigration process 173—174
Birth-and-death process 86—94
Birth-and-death process from Bellman — Harris process 99
Birth-and-death process from Waugh process 100 189
Birth-and-death process in queueing theory 383—385
Birth-and-death process limit theorems 103 104 108—111
Birth-and-death process uniqueness problem 91—93
Birth-and-death process, artificial realization of 450—452
Birth-and-death process, bivariate 176—179 182—184 204—209
Birth-and-death process, classification of 93 94
Birth-and-death process, cumulative 171—173
Birth-and-death process, distribution of maximum of sample function 104
Birth-and-death process, logistic 122 175
Birth-and-death process, nonhomogeneous 89—91 169—173
Birth-and-death process, quadratic 87n.
Blackwell, D. 28n. 53 309 331
Blanc-Lapierre, A. 5 130
Blatt, J.M. 317 323 331
Bochner, S. 5 130 162 264 289
Borchsenius, V. 124
Boundaries, classification of 143—145 160
Boundary entrance 144
Boundary exit 143
Boundary, absorbing 139
Boundary, accessible 143
Boundary, inaccessible 143
Boundary, natural 143 144
Boundary, reflecting 139
Boundary, regular 143
Bourbaki, N. 65 125
Branching process of a special form 111—115
Branching processes and random walk 44—47
Breiman, L. 92 125
Brockmeyer, E. 374n. 434
Brownian motion 139 140
Busbridge, I.W. 351 357
Butcher, J.C. 289 290 455 456
Camp, G.D. 456
Carlson, J.F. 236 290
Carslaw, H.S. 447
Castoldi, L. 26 53
Cerkasov, I.D. 161 162
Chadwick, J. 296 332
Chakrabarty, S.K. 238 246 289
Champernowne, D.G. 382 434
Chandrasekar, S. 334—336 339 351 355 357
Chapman — Kolmogorov functional equation 13 59 61 63 118 130
Characteristic functional 264 265 277—282
Chartres, B.A. 287 290
Chemical reactions chain 366—371
Chemical reactions, autocatalytic 360 361
Chemical reactions, bimolecular 362
Chemical reactions, diffusion-controlled 371 372
Chemical reactions, monomolecular 365 366
Chemical reactions, unimolecular 361 362
Chiang, C.L. 181 184 231
Chung, K.L. 5 28 30 31 53 62n. 125
Churchill, R.V. 447
Churchman, C.W. 434 449 456
Cistyakov, V.P. 118 125
Clarke, A.B. 382 434
Classification of boundaries 143—145 160
Clementel, E. 290
Closed class 50
Closed set of states 14
Coefficients of variation 123 248
Coefficients, of loss 413
Cohen, J.W. 404n. 435
Communicating states 14
Competitive and predatory populations 179—184
Compound distribution 96 441
Conditional probability 4 5 11
Conditional probability, constant 11
Conditional probability, limiting behavior 37—39
Conditional probability, stationary 11
Consael, R. 89n. 127 232
Continuant 93
Continuous parameter martingale 124
Contraction mappings, principle of 52
Convolution 10 441
Coppinger, J. 436
Coulson, C.A. 193 232
Cox, D.R. 411n. 414 434 435
Cramer, H. 22n. 53
Critical point of a Markov process 105
Crone, I.W. 449 456
Crow, J.F. 215 213
Cumulant generating function 21 172
Cumulants 21
Cumulative population size 42
Cumulative process 171—173
Czerwonko, J. 263 290
D'Ancona, U. 180 231
Darkening, law of 354—357
Darling, D.A. 148 162
Darwin, J.H. 231
Davis, G. 232 332
Death process 85—86
Death process in chemistry 362
Death process in epidemic theory 199—203
Death process, deterministic 170
Death process, linear 85 86
Death process, nonlinear 85n. 199—203
Death process, simple 85 86
Decomposable chain 14
Degenerate branching process 49
Delbrueck, M. 193 233 360 372
Density field, fluctuating 339—346
Dependent 5
Derman's theorem 30 31
Derman, C. 30 31 53
Diffusion processes in genetics 213—222
Diffusion processes in nuclear reactor theory 331
Diffusion processes in population growth 189—192
Diffusion processes, and branching processes 154—156
Diffusion processes, first-passage time problems 148—152
Diffusion processes, maximum distribution of 153 154
Diffusion processes, transformations of 161
Discrete branching process 10
Discrete parameter martingale 40
Discrete process, diffusion equation representation of 154—158
Dishonest processes 71n. 81 92
Dissipative chain 34
Dmitriev, N.A. 55
Dobrushin, R.L. 92 125
Doeblin, W 41 53
Doetsch, G. 447
Doig, A. 435
Doob, J.L. vii 3—5 40 63n. 72 103 124n. 125 130 309 331
Downton, F. 425 429 435
Dynkin, E.B. 5
Edlund, M.C. 324 331
Ehrenfest process 122
Electron-photon cascade 235
Electron-photon cascade, fluctuation problem for 246—265
Elementary return process 145
Ellis, C.D. 296 332
Emission, probability distribution of 353 354
Epidemic curve 203
Epidemics, small groups 212 213
Epidemics, two populations 208 209
Equilibrium distribution 28
Erdelyi, A. 448
Ergodic theorems 28—37 102—104
Erlang's loss formula 406
Erlang, A.K. 374 376 397
Everett, C.J. 48 51 53
Extinction, number of generations to 26 27
Extinction, probability of 18 47 89—91 98 170 171 179 191 see "Gambler's
Fagen, R.E. 437
Fay, H. 290
Feller integrodifferential equations 60 120
Feller — Lundberg theorem 81 82 91
Feller, W. vii 5 28n. 31n. 52n. 53 54 60 64 72 97 125 129 130 136 142—145 148 154n. 162 168 175 190 215 231 300 303n. 331 409 412 438 442
Fermi, E. 330
Feshbach, H. 216 233
Final class 50
First-passage time 17 93 148
First-passage time problems for diffusion processes 148—154
First-passage time problems in genetics 222
First-passage time problems, in chemistry 371
Fisher, R.A. 39 54 231
Fission detectors 313—316
Fisz, M. 5 77 125
Fixed points 24 52
Florek, K. 77 125
Fluctuating density field 339—346
Fluctuation problems, electron-photon cascades 246—265
Fluctuation problems, nucleon cascades 270—276
Fluctuation, relative (coefficient of variation) 123 248
Fokker — Planck equation 133 145—147 213—222 331
Fomin, S.V. 52n. 55
Forsythe, G.E. 456
Fortet, R. 5 54 130 162 192n. 231 435
Forward Kolmogorov diffusion equation 133
Foster, F.G. 17 34 35 54 207 231 378 381 435 455 456
Frechet, M. vii 5
Fry, T.C. 416 435
Functional iterates 19 24
Fundamental theorem for branching processes 24 52 381
Furry, W.H. 247 290
Gaffey, W.R. 213 231
Galaxies, model of simple clustering 347—350
Galton — Watson process 98 99
Galton, F.S. 23 24n. 54
Gambler's ruin problem 46—47 53n.
Ganguly, S. 290
Gani, J. 435
Gardiner, V. 452 456
Gardner, J.W. 288—290
Gellman, H. 290
Gene fixation, ultimate probability of 222
Gene frequency, maximum, distribution of 222 223
General counter model 307
Generalized classical boundary conditions 146
Generalized discrete branching process 36
Generalized discrete branching process, limit theorems for 35—37
Generating functions 18 439
Generating functions and moments 20—23
Generating functions and sums of independent random variables 441
Generating functions and transition probabilities 18—19
Generating functions, Maclaurin's expansion of 441—442
Generating functions, partial fraction resolution of 442
Germond, H.H. 456
Girault, M. 435
Glasstone, S. 324 331
Gnedenko, B.V. 5 22n. 27 54 331
Goldberg, S. viii 215 216 231
Good, I.J. 45 54
Goodman, L.A. 176 179 231
Green, H.S. 287 292
Greenwood, M. 212
Greisen, K. 239n. 293
Gupta, M.R. 290
Gurk, H.M. 395 435
H-equation 364—367
Hadamard, J. 24 54
Haight, F.A. 425 435
Hall, W.J. 125
Halmos, P.R. 6 69n. 126
Halstrom, H.L. 374n. 434
Hammerstey, J.M. 332 449 456
Happ, W.W. 322 332
Harris, T.E. 6 26 40n. 41 45 48 50 52n. 54 95 97 98 100 111 118 124 126 187 188 231 257n. 290
Haskey, H.W. 203 208 209 231
Hawkins, D. 25n. 42n. 54
Heat equation 139
Heitler, W. 236 239n. 247 257n. 266 289 290
Hellinger, E. 93 126
Herz, A.J. 323 332
Hille, E. 6 13n. 54 64n. 72 121n. 126 136 143 162
Hoffman, J.G. 452 456
Homma, T. 381 406 435
Householder, A.S. 449 455n. 456
Hull, T.E. 322 332
Imbedded Markov chain 377—381 426—429
Indecomposable chain 14
Independent increments, process with 121
Infinitesimal transition probabilities 63
Instantaneous return process 145—147
Integral equation, Chandrasekar — Muench 336—339 346
Integral equation, renewal type 97 302 303
Integral equation, Wiener — Hopf 395
Intensity function 59 62 105 119 157
Реклама