Авторизация
Поиск по указателям
Bharucha-Reid A.T. — Elements of the Theory of Markov Processes and Their Applications
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Elements of the Theory of Markov Processes and Their Applications
Автор: Bharucha-Reid A.T.
Аннотация: "My purpose in this book is twofold: first, to present a nonmeasure-theoretic introduction to Markov processes, and second, to give a formal treatment of mathematical models based on this theory which have been employed in various fields. Since the main emphasis is on applications, this book is intended as a text and reference in applied probability theory.
The book is divided into three parts: Part I, Theory; Part II, Applications; and Appendixes. Part I consists of three chapters which are respectively devoted to processes discrete in space and time, processes discrete in space and continuous in time, and processes continuous in space and time (diffusion processes). In the first two chapters we restrict our attention to Markov chains with a denumerable number of states, with particular reference to branching stochastic processes. The reader interested in chains with a finite number of states should consult, for example, the books of Doob, Feller, Frechet, Kemeny and Snell, and Romonovskii..." A.T.Bharucha-Reid
Язык:
Рубрика: Математика /
Серия: Сделано в холле
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1997
Количество страниц: 491
Добавлена в каталог: 04.12.2010
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Interarrival times 375
Interference loss 412
Inverse probabilities 31
Ionescu Tulcea, C.T. 6
Ionization cascade 276
Irreducible chain 14
Ito, K. 6 130 162
Ivanenko, I.P. 290
Iversen, S. 231
Jackson, R.R.P. 435
Jacobi matrix 44n.
Jaeger, J.C. 447
Janossy functions 276
Janossy G-equations 256—264 273—276
Janossy, L. 256 257n. 261n. 266 276 288 290 291 332
Jensen, A. 71n. 126 374n. 434
Jirina, M. 51 54 118 126
John, P.W.M. 77n. 87n. 91n. 92 122n. 126
Jordan, Ch. 251n.
Joshi, D.D. 176 179 231
Kac, M. 44n. 54 162
Kahn, H. 449 456
Kakutani, S. 32 56
Kalaba, R. 53
Kamata, K. 287 291
Kantorovic, L. 52 54
Kapadia, P.D. 288
Karlin, S. 44n. 54 55 87n. 92—94 103 126 382 434 435
Kato, T. 72 126
Kawada, Y. 6
Kawata, T. 381 425 435
Kemeny, J.G. vii 6
Kempthorne, O. 215 231
Kendall, D.G. 35 55 72 89 99 100 103 126 127 171 172 175 176 187 189 198 205 209 210 232 264 289 376 377 381 391 403 435 450 455 457
Kermack — McKendrick equations 205
Kermack — McKendrick equations, threshold theorem for 205—208
Kermack, W.O. 205
Kesten, H. 436
Khintchine, A. 6 130 162 416 436
Khristov, Kh.Ia. 291
Kiefer, J. 436
Kim, S.K. 371 372
Kimura, M. 215 216 219 222 231 232
King, G.W. 372 455
Klahr, C.N. 331 332
Koenig's Theorem 38
Koenigs, G. 38 55
Koenigsberg, E. 436
Kolmogorov differential equations 61 120
Kolmogorov differential equations for birth process 79—80
Kolmogorov differential equations for birth-and-death process 90—91
Kolmogorov differential equations for death process 86
Kolmogorov differential equations for Polya process 84 85
Kolmogorov differential equations, existence and uniqueness theory of 64—72
Kolmogorov differential equations, matrix form 63
Kolmogorov diffusion equations 130—139 160
Kolmogorov diffusion equations in genetics 213—223
Kolmogorov diffusion equations, existence and uniqueness theory of 136 144 145
Kolmogorov diffusion equations, methods of solving 136—139
Kolmogorov, A.N. 6 11 22n. 27 32 48 52n. 54 55 61 127 129 154n. 162 214 232 397 436
Konwent, H. 262 263 291
Koopman, B.O. 92 93 127
Kosten, L. 332
Kostitzin, V.A. 180 232
Kourganoff, V. 351 357
Kronig, R. 436
Kunisawa, K. 6
Kunz, K.S. 428n. 436
Kuratowski, C. 106n.
Kurbatov, J.D. 332
Laidler, K.J. 372
Lamb, W.E. 248 292
Lamens, A. 89n. 127 176n. 232
Landau — Rumer equations 239—246
Landau, H.G. 230
Landau, L. 238 291
Laplace transform 443—447
Laplace transform inversion theorem 444
Laplace — Stieltjes transform 444
Lateral condition 145n.
Lattice distribution 309
Law of mass action 364
Lea, D.E. 193 223 232
Ledermann, W. 64 91 121 127 382 385n. 436
Leslie, P.H. 233 452 457
Lethargy of neutron 324—330
Levert, C. 332
Levy, P. 6 62n. 102 127 130
Limit point of a Markov process 105
Limit sets of sample functions 105—108
Lindley, D.V. 393 395 436
Litwiniszyn, J. 130 162
Loeve, M. 6 156
Logistic process 122 175 192
Lopuszanski, J. viii 260—263 273 274 291
Loss formula, Erlang's 406
Lost call, probability of 403—406
Lost calls, expected number 406
Lotka, A.J. 180 233
Luchak, G. 382 436
Lundberg, O. 6
Luria, S.E. 193 233
Machine availability 413
Machine efficiency 413
Machine interference models, Palm's 408—414
Machine interference models, Takac's 414—419
Machines in repair, average number 412
Machines in working condition, average number 412
Machines repairman, patrolling 419—425
Machines repairmen, average number idle 412
Machines repairmen, expectation of busy time 418
Machines waiting line, average number in 412
Machines waiting time, distribution function of 418
Machines waiting time, expectation of 418
Machines, production times 417
Malecot, G. 215 233 442
Mann, H.B. 6 332
Marchand, H. 233
Marczewski, E. viii 77 105n. 125 127
Markov chain 4 10 11
Markov chain classification of states 13—17
Markov chain with continuous time parameter 61
Markov chain, dissipative 34
Markov chain, ergodic 378
Markov chain, nondissipative 34
Markov chain, periodic 52
Markov chain, recurrent 379
Markov chain, semidissipative 34
Markov chain, stationary 62
Markov chain, time-homogeneous 62
Markov chain, transient 62
Markov matrix 12
Markov process 4 58
Markov process diffusion 129
Markov process, discontinuous 57
Markov process, dishonest 71n. 81 92
Markov process, limit point 105
Markov process, mixed 194 387
Markov process, N-dimensional diffusion 158—160
Markov process, N-dimensional discontinuous 118—121
Markov process, periodic 124
Markov process, sample function 63
Markov property 11
Markov, A.A. 4n.
Marshall, B.O. 436
Martingale convergence theorem 40
Martingale, continuous parameter 124
Martingale, discrete parameter 40
Maruyama, G. 130 163
Mass action, law of 364
Mathews, P.M. 256 288 289 293 332 336 338n. 358
Matrix of transition probabilities 12
Maximum gene frequency 222 223
McCloskey, J. 436
McGregor, J. 44n. 54 55 87n. 92—94 103 126 382 435
McKean, H.P. 130 162 163
McKendrick, A.G. 199 205 233
McLachlan, N.W. 448
McMillan, B. 393 436
McVittie, G.C. 357
Mean ergodic theorem 32—34
Mean first-passage time 17
Mean recurrence time 17
Medgyessy, P. 372
Mellin transform 443 447
Mellin transform, inversion theorem 447
Messel, H. viii 246n. 248 261 263 267 269 270 275 276n. 287—292 455 456
Metropolis, N. 449 452 456 457
Metzler, W.H. 233
Meyer, H.A. 449 457
Migration probability function 185
Mihoc, G. 6
Milky Way, fluctuations in brightness 335—347
Miller, R.G. 425 437
Mitra, A.N. 248n. 292
Mixed Markov process 194 387
Models 1—3 168
Models, deterministic 1—3
Models, stochastic 1—3
Mogyorodi, J. 331 332
Molina, E.C. 397 410n. 437
Moments, truncated 131 132
Mondria, H. 436
Monte Carlo methods 449
Monte Carlo methods in biology 184 211 212 452 455
Monte Carlo methods in chemistry 455
Monte Carlo methods in operations research 455 456
Monte Carlo methods in physics 246 288 289 455
Montroll, E.W. 371—373
Moorish, A.H. 322 332
Moran, P.A.P. 215 233
Morgenstem, D. 81 127
Morse, P.M. 216 233 382 437
Morton, K.W. 456
Moyal, J.E. 57 127 276 292
Muench, G. 334—336 339 357
Muir, T. 233
Mutation processes, age-dependent theory of 196—198
Mutation processes, effect of phenotypic delay on 198
Mutation processes, single 193
Mycielski, J. 332
N-component cascade processes 287—288
N-dimensional branching processes 47—51
N-dimensional branching processes, fundamental theorem for 49—50
N-dimensional branching processes, limit theorems for 49—51
N-dimensional branching processes, moments of 48 49
N-dimensional Markov process, diffusion 158—160
N-dimensional Markov process, discontinuous 118—121
n-step transition probabilities 12
n-step transition probabilities, limiting behavior 28—37
Nakamura, G. 438
Naor, P. 410 412 413 437
Nelson, L. 308 331
Nemeth, G. 331 332
Neveu, J. 130 148n. 163
Neyman, J. 184 233 334 347 357
Nickols, D.G. 435
Nishimera, J. 287 291
Nondissipative chains 34
Nordsieck, A. 248 292
Normed random variables 39—41 116
Nucleon cascades 237
Nucleon cascades, fluctuation problem for 270—276
O'Ceallaigh, C. 322 323
Olbert, S. 287 292
Olsson, O. 332
Onicescu, O. 6
Opatowski, I. 127 223 233
Operative efficiency 413
Oppenheimer, J.R. 236 290
Ornstein, L.S. 140n. 163
Otter, R. 10n. 42n. 43 55
Pakshirajan, R.P. viii
Pal, L. 292 314 331 332
Palm's machine interference models 408—414
Palm, C. 403 408 409 412 414 416 437
Park, T. 184 233
Patil, V.T. 233
Pearl — Verhulst equation 192
Petrovskii, I. 214 232
Phenotypic delay 198
Phillips, R.S. 6 13n. 54 64n. 72 126 162
Picard, E. 24 55
Pinney, E. 73n. 127
Pinsker, A.G. 54
Piscounov, N. 214 232
Poisson distribution 74 186
Poisson process 73—77
Poisson process in cascade theory 247 248
Poisson process in population migration 186
Poisson process in theory of radioactive transformations 298
Poisson process, composed 77
Poisson process, nonhomogeneous 77
Pollaczek, F. 403n. 437
Polya process 82—85
Polya process in cascade theory 248
Polya process relationship to Poisson and Yule — Furry processes 84
Polya process, Kolmogorov equations for 84—85
Polymer chains 372
Popov, Iu.A. 292
Population growth, diffusion equation representation 189—192
Population migration 184—186
Populations, competitive and predatory 179—184
Potts, R.B. 263 269 270 275 288 292
Powell, E.O. 187n. 233
Preisendorfer, R.W. 351 357
Prekopa, A. 77 127 372 373
Prendiville, B.J. 175
Principle of contraction mappings 52
Probability function 58
Probability function, absolute 58
Probability function, conditional 58
Product density functions 249—256 283—287 347
Puppi, G. 290
Pyke, R. 185 332
Quasi-process 71n.
Queueing systems discipline 375
Queueing systems input process 375
Queueing systems input process arrival times 375
Queueing systems input process interarrival times 375
Queueing systems representation integral equation 393—395
Queueing systems representation integrodifferential equation 385—393
Queueing systems representation Markov chain 377—381
Queueing systems representation, differential-difference equations 381—385
Queueing systems service mechanism 375
Queueing systems service times 375 376
Queueing systems, description 376
Queues, balking 429—434
Queues, bulk-service 425—429
Queues, ergodic 378 379
Queues, non-Markovian 399—403 414—419
Queues, recurrent 379
Queues, transient 379 see "Machines" "Service "Telephone
Radiation damage, birth-and-death model 223—227
Radiation damage, random-walk model 227—230
Radiobiology see "Radiation damage"
Ramakrishnan, A. 127 249 256 276 282 283 287—289 292 293 332 334 336 338n. 339 346 347 357 358
Random drift 215—219
Random walk 44
Random walk and branching processes 44—47
Реклама