Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Kienzler R., Herrmann G. — Mechanics of material space: with applications to defect and fracture mechanics
Kienzler R., Herrmann G. — Mechanics of material space: with applications to defect and fracture mechanics



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Mechanics of material space: with applications to defect and fracture mechanics

Àâòîðû: Kienzler R., Herrmann G.

Àííîòàöèÿ:

The aim of the book is to present, in a novel and unified fashion, the elements of Mechanics in Material Space or Configurational Mechanics, with applications to fracture and defect mechanics. This mechanics, in contrast to Newtonian mechanics in physical space, is concerned with defects such as cracks and dislocations, which are embedded in the material and might move in it. The level is kept accessible to any engineer, scientist or graduate student possessing some knowledge of calculus and partial differential equations, and working in the various areas where rational use of materials is essential.


ßçûê: en

Ðóáðèêà: Ôèçèêà/Êëàññè÷åñêàÿ ôèçèêà/Óïðóãèå ñðåäû/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2000

Êîëè÷åñòâî ñòðàíèö: 298

Äîáàâëåíà â êàòàëîã: 18.06.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Action integral      20—44 58 63 147 172
Anderson, T.L.      107
Angle of rotation      198
Angle of twist      197
Anisotropy, anisotropic      6 116 148 174 179
antisymmetric      65 89
arch      195
Arnold, V.I.      1 176
Bakker, A.      100
Balance laws      IV 42 48 68 72—77 133—156 167 170 173—195 200—205 224—229 239 250 254 265—271
Balance of angular momentum      9 54 73 141 270
Balance of expanding (scalar) momentum      73 142
Balance of linear momentum      8 f. 42 54 73 201
Bar (theory)      VII 36 38 45. 156—158 195—213 219 239—250
Barber, J.R.      51 59 60 75
Bazant, Z.P.      209 210 211
Beam (theory)      VII 9 13 34 116 129—131 156 195—217 219 224 226 245—257 261
Beam (theory), double cantilever      128 f.
Bending      195—213 228 269
Bending, three-point      179 217
Benthem, J.P.      212 213 214 215
Bernoulli — Euler beam theory (classical or elementary theory)      198 220 245—252
Bernoulli, J.      195
Bernoulli’s normal hypothesis      219
Bessel-Hagen extension      13 33 39 41 48 51 62 67 124
Bessel-Hagen, E.      33 124
Betti — Maxwell reciprocal theorem      75
Binominal expansion      25
Biot, M.A.      180 192
Bluman, G.W.      172
Boundary, condition      43 58—60 129—131 137 177 207 220—224
Boundary, value problem      4 74 112
Budiansky, B.      3 72 97 100
Buggisch, H.      97
Bui, H.D.      72
bulk modulus      56
Burgers vector      100
Butkov, E.      161
C* integral      171 f.
Calculus of variation      VI 20 42 48
Calculus, differential      20
Cauchy relation      7 54 90
Cauchy, A.L.      195
Cavity      V 6 11 72 96 100—105 228
Chadwick, P.      79
Chain rule      34
Characteristic      13 27—37 44 72—78 124 162—172 181—191 239 245—277
Characteristic equation      54 f. 87 89
Charge, electric      174
Cherepanov, G.P.      3 105
Cherradi, N.      121
Chien, N.      45 162 163 165 172 179 180 246 259 261
Christoffel symbol      233
Clapeyron’s theorem      207
Compatibility      121
Conductivity, coefficient of thermal      162
Configuration      V 3 52 71 79 98 116 198 219
Conservation law      VI 3 13—48 51 62—79 95 121—126 133 138—146 161—173 181—191 195—205 219 224—238 239—272
Conservation law, dual      72
Conservation law, trivial      17 f. 42 188 191
Conservation of angular momentum      9 123
Conservation of energy      77 136 140 167 188 266
Conservation of linear momentum      8 f. 123
Conservation of mass      141
Conservation of waves      157
Consistent theory      219
Constitutive relation (equation or law)      1 42 48 57—62 76 79 147 167 171 174—192 204 223—234
Constraint (condition or equation)      66 68 75 199 221 237 241 246—257 262—272
Constraint (condition or equation), kinematic      198
Convolution      133 143—146
Cosserat theory      54 200
Crack      V VII 1 3 9 72 100 109—121 151—154 169 174—179 195 206—216 229 232
Crack, length      4 108 179 209 211
Crack, size      211—215
Crack, tip      2 f. 95 107—116 127—131 145 152 179 209
creep      171
Cross-section      36 90—93 132 134 196—213 234
Current      27—48 63—75 122 135 162—188 204—271
Curvatur      198 234 237
Darcey’s law      193
Dead load      57
Defect      1—6 53 71 95—100 110 146 151 169—178 195 225
Deflection      129 f. 198 224
Degradation, electric      174
Delale, F.      172
Deviatoric part of a tensor      65 88
Dielectric      VII 173—176
Differential, form      14
Differential, total      231
Differentiation      20 39 57
Differentiation of a product (product role)      22 27 30 35
Differentiation, partial      14 23 30
Differentiation, total      30 75 168
Diffusion      104 121 161 179 209
Diffusion, coefficient of      162
Dilatation      180 193
Direction, principal      55 81 86 89
Discontinuity      206
Discontinuity in stiffness      205 225
Dislocation      V 1 10 53 95 100—106
Dispersion (relation)      157 159
Displacement      32 36 52—61 75 79 84 99 107 109 117 122 128 131 137 139 144 167
Displacement, electric      174—177
Displacement, field      74 f. 82 111 128
Displacement, gradient      19 52—57 67 75 86—88 137 177 185
Displacement, plate      221 f.
Displacement, transverse      220 f.
Dissipation      20 42 161 167 191
Dissipation, energy      3 167—170 270
Dissipative system      VII 48 161 172 179
Divergence of flux      15 140
Divergence, expression      14 33 42 74 81 147—150 199
Divergence, free      9 63 66 125 133 166 174 226 247—256
Divergence, null      18
Divergence, Theorem      8 15 28 32 43 69 75 98 124 145 148 154 172 178 186 226—228
Duality      4 51 79 141 202
Duan, Z.P.      100
Duhamel’s integral      143
Dundurs, J.      104
Dynamics      76 156 245—251 269
Edelen, D.G.B.      68
Ehrlacher, A.      153
Eigenvalue      54 86 89 92
Eigenvalue, problem      54 89
Eischen, J.W.      77 97 100 127 128 146 186 232
Elasticity, elastic      3 19 71—79 95 171 179 185 209 220 226 231
Elasticity, elastic, antiplane      60
Elasticity, elastic, plane      60 235
Elasticity, elastic, theory of      VI 13 51—60 87 89 107 195 227 230
Elastodynamics      VI 79 133 143 146 151 221 224 245 259 265
Elastostatics      VI 3 19 32 51 62—78 100 121 133 145 151 174—177 224 245
Elastostatics, antiplane      51
Elastostatics, plane      51 59 101 121 202. 211 263
Electrostatics      3
Energy density, potential      200 f. 265
Energy density, strain      13 19 56—60 67 76—78 82—87 98 102 122—130 134 147 152 167—170 175—191 197—209 222—234 259
Energy density, total      see “Hamiltonian”
Energy, complementary      72
Energy, flux (or flow) of      15 136 157
Energy, internal      82—84
Energy, kinetic      20 76 134 146 152 222 224 245 265
Energy, potential      84 106 207 265
Energy, surface      108 152
Energy, theorem, (relation)      29 158
Energy, total      V 2—10 82—89 92 97—99 103 108 116 118 137 208
Energy-absorption rate      152 f.
Energy-release rate      VI f. 3 4 72 92 95—100 103 108—116 121 132 146—155 173—179 195. 228
Enthalpy (density), electric      176—178
Equation of compatibility      53 61
Equation of equilibrium      20 22 37 54—60 123 149 165—171 180 192 200 204 225 234 266
Equation of motion      3 11 20 76 104 135—148 222—224
Equation, biharmonic      18
Equation, differential      13—18 24 32 41—49 59 64 72 89 105 123 161 164 172 219 239—245 252
Equation, diffusion      161
Equation, energy (-balance)      152—160
Equation, Euler — Lagrange      3 20—23 27—49 62 134 158 224 234 245 263
Equation, field      17 58 60 75 130 174—177 219 223
Equation, harmonic      18 61
Equation, Laplace’s      18 179
Equation, Navier — Lame      58—62 72 74
Equation, non-linear wave      161 163
Equation, wave      135
Equilibrium      1 10 53 69 104 106 116 119 133 138 196—203 239
Equilibrium, stable      10 106
Equilibrium, unstable      10 106
Erdogan, F.      121 127
Ericksen, J.L.      5
Esclienauer, H.      223 233 234
Eshelby, J.D.      V 2 3 5 56 70 97 98 200
Euclidian space      1 6
Euler, L.      1 20 195
Expansion, thermal      180
Failure (criterium)      109 121 174
Federov, F.I.      175
Feshbach, H.      49 135 136 139 140 141
Field, coupled      19 173 179
Field, elastic      VII 173—179
Field, electric      VII 173—179
Field, intensity      139
Field, interacting      VII
Field, thermal (temperature)      VII 173 179—191
First integral      15 76
Fletcher, D.C.      148
Fluegge, W.      143 233
Flux      15 27 122 140 149 157 159 270
Fomin, S.V.      20
Force on a defect      V 1—6 99
Force on a disclination      5
Force on a singularity      V 2 97
Force, (transverse) shear      129 198 220—224 234 254 258 270
Force, body (volume)      8 f. 54—58 66—82 141—154 161 165 174
Force, configurational      VI 2—6
Force, crack-extension      VI 2 108 111 173 178
Force, driving      2 6 209
Force, Eshelbian      V
Force, external      53 99 234
Force, Galilean      V
Force, inertia (d’Alembert)      141 148
Force, inhomogeneity      6 9 67
Force, material      V 2—11 38 70 95 102—116 136—141 200—209 226 241—243 250—258
Force, membrane      234
Force, Newtonian      V 2—6
Force, Peach — Koehler      102
Force, physical      V 4—11 38 52 100 203 240—243
Force, thermodynamic      2 6
Fourier’s law      193
Fracture toughness      109 118 174
Frame      195
Francfoit, G.      145
Free-body diagram      4 9 82 95 114—116
frequency      156
Freund, L.B.      94 97 107 116 146 152
Functionally graded (or gradient) material (FGM)      121
Fung, Y.C.      207
Galilei, G.      1
Gao, H.      94 178 179 209 211 215 216
Gauss’ law of electrostatics      174
Gauss’ relationship      236
Gdoutos, E.E.      107 109
Gelfand, I.M.      20
Golebiewska-Hemnann, A.      77 79 93 113 145 233 234 237
Goodier, J.N.      51 58 60 92
Gould, P.L.      51
Griffith, A.A.      108 152
Gross, D.      94 107
Group (theory)      VI 2 28 31 36
Group (theory), infinitesimal      67
Group (theory), symmetry      273
Guenther, W.      3 67 124 202
Gurtin, M.E.      4 143. 186
Halm, H.G.      51
Hamilton, W.R.      1
Hamiltonian      7 136—140 153—159 250 265
Hamilton’s principle      20
Heat, absorbed      180 182
Heat, conduction      161 180 193
Heat, specific      180
Herrmann, G.      77 81 90 93 97 100 101 113 123 134 136 140 143 146 177 178 179 180 186 202 207 209 211 215 216 228
Hilbert’s assertation      29
Hoff, N.J.      171
Hole-dislocation interaction      100—106
Homogeneity, homogeneous      1—8 19 36 54 61 66—77 81 86 96 98 113 116 124—133 138 144 171 178 202 226—228 240 250 255 263 270 275
Honein, T.      4 42 101 123 161 162
Hooke’s law      55—61 65 75 88 146 196 239
Hubbart, J.H.      89
Ilschner, B.      121
inclusion      V 1 3 6 11 81 92 95 104
Inertia (term)      133 146 149 154 245 252 260 269
Inertia (term), rotatory      220 245
Infinitesimal generator      26 30 35 264 273
Influence surface      106
Inhomogeneity, inhomogeneous      70 121—129 146—154 177 195—202 222—226 239—272
Inhomogeneity, inhomogeneous, material      9 57 66 96 146 225
Inhomogeneity, inhomogeneous, physical      56 66 225
Initial condition      137 144 223
Integral, domain-independent      68 134 146 228
Integral, path-independent      2 70 81 95—113 121—128 143—146 161 169 173 178 186 224 233 259 271
Integrating factor      76 f. 138
Interaction, electromechanical      174
Invariance, invariant      VI 5 13 28 63 172 219 229
Invariance, invariant, condition      29 f. 32 37 63 122
Invariance, invariant, under group action      13
Invariance, invariant, under reparametrization      4
Invariants      55 81 86—91 101
Inverse deformation      79
Involution correspondence      101
Irwin relation      108 210
Irwin, G.R.      107 108
Isotropy, isotropic      1 6 55 67—73 145 149 220 227 236
J integral      2 f. 70 72 81 96 107—118 121—132 145 154 171 173 178 185 209 226 230 271
Jet (bundle) space      13 26 35
Jump in compliance      206
Jump in stiffness      206
Jump, term      206 208
Kanninen, M.F.      107
Kelvin — Voigt model      165 168
Khutoryansky, N.M.      177
Kienzler, R.      70 81 90 93 97 100 101 109 113 130 140 143 172 186 202 207 209 211 233 234 237
Kinematic (relation)      52 58 61 130 197 223 234 239
Kirchhoff, G.R.      220
Kirchhoff’s, condition      220 223
Kirchhoff’s, ersatz-shear force      231
Knott, J.F.      209
Knowles, J.K.      3 67 124
Koehler, J.S.      102
Koiter, W.T.      212 213 214 215 219
Kordisch, H.      70 101 113
Kraetzig, W.B.      219
Kroener, E.      5
Kronecker symbol      32
Kumei, S.      172
L integral      3 70—72 81 96—100 111 115 124 142 227 231 271
Lagrange, J.L.      1
Lagrangian (density or function)      3 13 19—48 51 56—77 121 134 146—161 172 186 200 202 219—236 245 252 259—271
Lagrangian (density or function), null      42—44 48
Lamb, H.      141
Lame, G.      195
Lame’s constants      55 f. 122 168—170 180
Laplace transform      146
Legendre transformation      176
1 2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå