|
 |
Àâòîðèçàöèÿ |
|
 |
Ïîèñê ïî óêàçàòåëÿì |
|
 |
|
 |
|
 |
 |
|
 |
|
Fulton W., Harris J. — Representation Theory: A First Course |
|
 |
Ïðåäìåòíûé óêàçàòåëü |
-ring 380
Abelian groups (representations of) 8
Abelian Lie algebra 121
Abelian Lie group 94
Abelian variety 135
Abramsky — Jahn — King formula 411—412
Adams operators 380 449
Adjoint form (of a Lie group) 101
Adjoint representation 106
Admissible Coxeter diagram 327
Ado's Theorem 124 500—503
Algebraic group 95 374
Alternating group (representations of), 9
Alternating group (representations of), 20
Alternating group (representations of), 29
Alternating group (representations of), 63—67
Alternating map 472
Alternating representation 9
Artin's theorem 36
Automorphism group of a Lie algebra 498
Averaging 6 15 21
Bilinear form 40 97
Borel subalgebra 210 338 382
Borel subgroup 67 383 4'
Borel — Weil — Bott — Schmid theorem 392—393
Borel's fixed point theorem 384
Bracket 107—108 504
Branching formula 59 426
Brauer's theorem 36
Bruliat cell and decomposition 395—398
Burnside 24—25
Campbell — Hausdorff formula 117
Capelli's identity 507—508 514—515
Cartan 434
Cartan criterion for solvability 479
Cartan decomposition 198 437
Cartan matrix 334
Cartan multiplication 429
Cartan subalgebra 198 338 432 478—492
Cartan subgroup 369 373 381
Casimir operator 416 429 481
Cauchy's identity 457—458
Cayley algebra 362—365
Cayley operator 507
Center of Lie algebra 121
Character (of representation) 13 22 375 440 442
Character homomorphism 375
Character table 14
Character table, of 20
Character table, of 29
Character table, of 66
Character table, of 14
Character table, of 19
Character table, of 28
Character table, of 49
Character table, of 70
Character table, of 71—73
Characteristic ideal 484
Characteristics (of Frobenius) 51
Chevalley groups 74
Chordal variety 192 230
Class function 13 22
Classical Lie algebras and groups 132 367—375
Clebsch 237
Clebsch — Gordon problem 8 424
Clifford 64
Clifford algebras 30 299—307 364—365
Commutator algebra 84
Commutator subalgebra of Lie algebra 122
Compact form 432—438
Complete reducibility 6 128 481—483
Complete symmetric polynomial 77 453
Complex Lie algebra 109
Complex Lie group 95
Complex representation 41 444—449
Complex torus 120
Complexification 430 438
Conjugate linear involution 436
Conjugate partition 45 454
Conjugate representation 64
Connected Lie group 94
Contraction maps 182 224 260—262 288 475—477
Convolution 38
Coroot 495—496
Coxeter diagram 327
Cube, rigid motions of 20
Degree (of representation) 3
Derivation 113 480 483—486
Derived series 122
Deruyts 237
Determinantal formula 58 404 406—411 454—470
Dihedral group 30 243
Dimension of Lie group 93
Direct sum (of representations) 4
Discriminant 48 400 454
Distinguished subalgebras 200
Dodecahedron, rigid motions of 29—30
Dominant weight 203 376
Dual (of representation) 4 110 233
Dual (of root system) 496
Dynkin 117
Dynkin diagrams 319—338
Eigenspace 162
Eigenvector 162
Eightfold way 179
Elementary subgroup 36
Elementary symmetric polynomial 77 454
Elliptic curve 133—135
Engel's theorem 125
Exceptional Lie algebras and groups 132 339—365
Exceptional Lie algebras and groups, — 361—362 392
Exceptional Lie algebras and groups, 362 365
Exceptional Lie algebras and groups, 339—359 362—364 391—392
Exponential map 115—120 369—370
Exterior algebra 475
Exterior powers of representations 4 31—32 472—477
External tensor product 24 427
Extra-special 2-groups 31
First fundamental theorem of invariant theory 504—513
Fixed point formula 14 384 393
Flag (complete and partial) 95—96 383—398
Flag manifold 73 383—398
Fourier inversion formula 17
Fourier transform 38
Freudenthal 359 361
Freudenthal multiplicity formula 415—419
Frobenius character formula 49 54—62
Frobenius reciprocity 35 37—38
Fundamental weights 205 287 295 376—378 528
Gelfand 426
General linear group 95 97 231—237
Giambelli's formula 404—411 455
Grassmannian 192 227—231 276—278 283 286 386—388
Grassmannian (Lagrangian and orthogonal) 386—387 390
Group algebra 36—39
Half-spin representations 306
Heisenberg group 31
Hermite Reciprocity 82 160 189 233
Hermitian inner product, form 6 11 16 98 99
hessian 157
Highest weight 175 203
Highest weight vector 167 175 202
Homogeneous spaces 382—398
Hook length (formula) 50 78 411—412
Hopf algebra 62
Icosahedron, rigid motions of 29—30
Ideal in Lie algebra 122
Immersed subgroup 95
Incidence correspondence 193
Indecomposable representation 6
| Induced representation 32—36 37—38 393
Inner multiplicities 415
Inner product 16 23 79
Internal products 476
Invariant polynomials 504—513
Invariant subspace 6
Irreducible representation 4
Isogenous, isogeny 101
Isotropic 262 274 278 304 378 390
Jacobi identity 108 114
Jacobi — Trudy identity 455
Jordan algebra 365
Jordan decomposition 128—129 478 482—483
Killing form 202 206—210 240—241 272 478—479
King 411 424
Klimyk 428
Kostant 429
Kostant multiplicity formula 419—424
Kostka numbers 56—57 80 456—457 459
Level (of a root) 330
Levi decomposition, subalgebra 124 499—500
Lexicographic ordering of partitions 53
Lie algebra 108
Lie group 93
Lie subalgebra 109
Lie subgroup 94
Lie's theorem 126
Littlewood — Richardson number 58 79 82—83 424 427 455—456
Littlewood — Richardson rule 58 79 225—227 455—456
Lower central series 122
Map between Lie groups 93
Map between representations 3
Minuscule weight 423
Modification rules 426
Modular representation 7
Module (G-module, g-module) 3 481
Molien 24—25
Monomial symmetric polynomial 454
Morphism of Lie groups 93
Multilinear map 472
Multiplicities 7 17 199 375
Murnaghan — Nakayama rule 59
Natural real form 435 437
Newton polynomials 460
Nil radical 485
Nilpotent Lie algebra 122 124—125
Nilrepresentation 501
Nnipotent matrices 96
Octonians 362—365
One-parameter subgroup 115
Ordering of roots 202
Orthogonal group 96 97 268—269 300 301 367 374
Orthogonal Lie algebras 268—269
Orthonormal 16 17 22
Outer product 58 61
Pairing 4
Partition 18 44—45 421 453
Perfect Lie algebra 123
Perfect pairing 28
Permutation representation 5
Peter-Weyl theorem 440
Pfaffian 228
Pieri's formula 58—59 79—81 225—227 455 462
Plancherel formula 38
Plane conic 154—159
Plethysm 8 82 151—160 185—193 224—231
Pluecker embedding 227—228 389
Pluecker equations, relations 229 235
Poincare — Birchoff — Witt theorem 486
Positive definite 98 99 207
Positive roots 202 214 243 271
Power sums 48 459—460
Primitive root 204 215 243 271—272
Projection (formulas) 15 21 23
Projective space 153
Quadric 189—190 228 274—278 285—286 313 388 391
Quaternionic representational 444—449
Quaternions 99 312
Racah 422 425 428
Radical or a Lie algebra 123 483—481
Rank (of a partition) 51
Rank (of Lie algebra or root system) 321 488
Rational normal curve 153—160
Real form 430 442
Real representation 5 17 444—449
Real simple Lie algebras and groups 430—439
Reductive Lie algebra 131
Regular element 487—488
Regular representation 5 17
Representation 3 95 100 109
Representation defined over a field 41
Representation of a Lie algebra 109
Representation ring of finite group 22
Representation ring of Lie group or algebra 375—382
Representations of , , , 414
Representations of 350—359 412—414
Representations of 146—160
Representations of 161—193
Representations of and 217—231
Representations of 273
Representations of 274—277
Representations of 277—281
Representations of 282—286
Representations of 294—296
Representations of 312—315
Representations of 294—296 307 407—409
Representations of 286—292 305—306 409—411
Representations of 244—252
Representations of 256—259
Representations of 259—266 404—407
Representations of 231—237
Restricted representation 32 80 381—382 425—428
Right action 38—39
Root 165 198 240 270 332—334 489
Root lattice 166 213 242 273 372—374
Root space 165 198
Root system 320
Schur functor 76 222—227
Schur polynomial 49 77 223 399 454—462
Schur's lemma 7
Semisimple Lie algebra 123 131 209 480
Semistandard tableau 56 236 456 461
Serre 337
Severi 392
Shuffle 474
Simple Lie algebra 122 131—132
Simple root 204 324
Simply reducible group 227
Skew hook 59
Skew Schur functor, function 82—83
Skew symmetric bilinear form 238
Skew Young diagram 82
Snapper conjecture 60
Solvable Lie algebra 122 125 479—480
Specht module 60
Special linear group 95—97
Special linear Lie algebra 211—212
Special unitary group 98
Spin groups 102 299—300 307—312 368—372
Spin representations 30 281 291 295 306 446 448
Spinor 306
Spinor variety 390
Split conjugacy class 64
Split form 432—438 445
Standard representation 9 151 176 244 257 273 352
Standard tableau 57 81 457
Steinberg's formula 425
String (of roots) 201 324
Subrepresentation 4
Symmetric algebra 475
|
|
 |
Ðåêëàìà |
 |
|
|