Авторизация
Поиск по указателям
Aldrovandi R. — Special matrices of mathematical physics (stochastic, circulant and bell matrices)
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Special matrices of mathematical physics (stochastic, circulant and bell matrices)
Автор: Aldrovandi R.
Аннотация: This book expounds three special kinds of matrices that are of physical interest, centering on physical examples. Stochastic matrices describe dynamical systems of many different types, involving (or not) phenomena like transience, dissipation, ergodicity, nonequilibrium, and hypersensitivity to initial conditions. The main characteristic is growth by agglomeration, as in glass formation. Circulants are the building blocks of elementary Fourier analysis and provide a natural gateway to quantum mechanics and noncommutative geometry. Bell polynomials offer closed expressions for many formulas concerning Lie algebra invariants, differential geometry and real gases, and their matrices are instrumental in the study of chaotic mappings.
Язык:
Рубрика: Физика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 2001
Количество страниц: 323
Добавлена в каталог: 28.03.2010
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Adjoint of a matrix 5
Algebra invariants 200
Algebra, defined 5
Algebra, Hopf 120
Algebra, infinite 123
Algebra, Lie 5
Alphabet 5 153
Alphabet of roots 191
Alphabet with one missing letter 208
Alphabet, eigenvalue 196
Alphabet, letters 5
Alphabet, noncommutative 186
Alphabet, reciprocal 193
Alphabet, word 5
Alphabets relations between 191
Alternating function 192
Annihilating polynomial 4
Approximates, Pade 195
Area-preserving, transformation 124
Asymptotic, distribution 29
Asymptotic, equilibrium 29
Attractor of a Markov chain 54
Average on a distribution 29
Basis, matrix 93 106
Bell matrices, eigenvectors 180 226
Bell matrices, group of 167
Bell matrices, introduced 165
Bell matrices, not normal 168
Bell number 159
Bell polynomials and orthogonal polynomials 178
Bell polynomials and partition function 243
Bell polynomials, complete 153 154 177 199
Bell polynomials, definition 151
Bell polynomials, derivatives 181
Bell polynomials, logarithmic 164
Bell polynomials, matrices of 165
Bell polynomials, notation 153 154
Bell polynomials, partial 153
Bell polynomials, power 165
Bell polynomials, properties 155
Bell polynomials, recursion relation 177
Bell polynomials, special cases 160
Bialgebra 120
Boltzmann function 70
Borel transform 155
Bose function 256
Bracket, Moyal 103 114 119 124 133 137 146
Bracket, Poisson 100 103 111 124 132 133
Bracket, Poisson, quantum 129 138
Braid 146
Braid, equation 103
Braid, gas 265
Braid, group 140 236 264
Braid, group, presentation 265
Braid, statistics 264
Braid, statistics and superconductivity 264
Calculus fractional 180
Canonical, ensemble 239
Canonical, partition function 260
Casimir operators 201
Cayley-Hamilton theorem 4 6 84 197
Chapman — Kolmogorov equation 28
Character of a group 123
Character of a group, defined 118
Characteristic, class 203
Characteristic, equation 3
Characteristic, forms 196
Characteristic, matrix 3
Characteristic, polynomial 3 196
Chebyshev polynomials 179 220
Chern, characters 203
Chern, classes 203
Circle theorem 272
Circulant and Fourier transformation 84
Circulant, application of 182
Circulant, basis 88
Circulant, defined 83
Circulant, determinant 84
Circulant, projectors 87
Circulant, semi 169
Circulant, stochastic 53 96
Class, characteristic 203
Classical mechanics 99
Cluster and minor 198
Cluster, cofactor 198
Cluster, expansion 255
Cluster, integral 241
Composition function 151
Condensation 267
Condensation, Lee — Yang theory 270
Condensation, Mayer theory 268
Connected diagram 155
Connected graphs 155 263
Continuous iterate 211
Continuum time in Markov chains 60
Convolution 87 90
Convolution, twisted 102 114 115 123
Coordination number 75
Correlation quantum 251
Correspondence principle 102 112 117
Critical phenomena 267
Cycle decomposition 245 280
Cycle indicator polynomial 234
Cyclic group 85
Darboux theorem 128
Delta Kronecker 85
Derivation 129
Derivative cohomology 131
Detailed balancing 67 68
Detailed balancing and equilibrium 70
Determinant 183
Determinant and characteristic polynomial 197
Determinant and fermions 232
Determinant and traces of powers 185
Determinant, circulant 84
Determinant, Fredholm 276
Determinant, Vandermonde 193
Diagram, connected 155
Differential forms matrix 130
Differintegration 180
Discriminant of a polynomial 195
Displacement operator 89
Dissipation 66
Distribution functions 251
Distribution, equilibrium 29
Distribution, probability 26
Doubly-stochastic matrix 50 96
Duality, Fourier 122
Dynamic quantity, classical 99
Dynamic quantity, classical and quantum 113 117 140
Dynamic quantity, quantum 107
Eigenvalues 4
Eigenvalues of a Fredholm operator 282
Eigenvalues of Bell matrices 219
Eigenvalues of normal matrices 17
Eigenvalues of stochastic matrices 47
Eigenvalues, alphabet 196
Eigenvalues, symmetric functions of 187
Eigenvectors of Bell matrices 226
Eigenvectors of circulants 86
Eigenvectors of stochastic matrices 46 62
Ensemble, Canonical 239
Ensemble, Grand Canonical 253
Ensemble, microcanonical 228
Entire, Chapman — Kolmogorov 28
Entire, characteristic 3
Entire, function 279
Entire, Liouville 127
Entire, master 61
Entire, Maurer — Cartan 129
Entire, Schroeder 222
Entire, secular 3 197
Entire, Yang — Baxter 103 120 143
Equation braid 103
Equation of state, Boyle Mariotte 268
Equation of state, Mayer 268
Equation of state, virial 256
Equilibrium 46 54
Equilibrium and detailed balancing 70
Equilibrium, asymptotic 29
Equilibrium, distribution 29 53
Equilibrium, unstable 66
Ergodic, theorem 67 74
Eternel retour 66
Evanescent root 53
Faa di Bruno formula 153 161 181
Fermi function 256
Feynman diagrams number of 242
Fibonacci numbers 164
Formula, Faa di Bruno 153 161 181
Formula, Lagrange 173
Formula, Leibniz 172
Formula, Matsubara 263
Formula, Mayer 256
Formula, Newton 191
Formula, Prakash- Sudarshan 237
Formula, Viete 194
Formula, Wronski 169
Fourier transformation and circulants 84
Fourier transformation and cyclic groups 85
Fourier transformation and quantum groups 122
Fourier transformation, double 95
Fourier transformation, operator 113
Fourier, duality 122
Fractional calculus 180
Fredholm, alternative 275
Fredholm, determinant 276
Fredholm, first 278
Fredholm, minor 185
Fredholm, theory 185 245 274
Free energy, Helmholtz 247
Frobenius, spectral theorem 47 49
Fugacity 254
Function of a Bell matrix 207
Function of a circulant 91
Function of a matrix 8
Function, Bose 256
Function, composition 151
Function, entire 279
Function, Fermi 256
Function, Heaviside 195
Function, inverse 157
Fundamental group 265
Fundamental theorem of symmetric functions 187
Gas, braid 265
Gas, ideal 245
Gas, quantum 248 256 260
Gas, real 243 256 267
Gas, relativistic 248 260
Gas, ultrarelativistic 262
Gegenbauer, polynomials 178
Generating function for Bell numbers 160
Generating function for Bell polynomials 153 177
Generating function for conditional partition numbers 211
Generating function for Hermite polynomials 178
Generating function for Legendre polynomials 178
Generating function for number of partitions 153
Generating function for Stirling numbers 158
Generating function for symmetric functions, elementary 187 208
Generating function for symmetric functions, homogeneous 187
Generating function for symmetric functions, power-sum 188
Generating function, Chebyshev polynomials 179
Generating function, cycle indicator as 234
Generating function, Gegenbauer polynomials 178
Generating function, manipulations 162
Generators of the braid group 141 265
Generators of the symmetric group 235
Gibbs potential 253
Gibbs — Di Marzio law 34 39 78
Glass, binary 72 77
Golden ratio 164
grand canonical ensemble 253
Grand canonical ensemble, graphs connected 155 245 263
Grand canonical ensemble, partition function 188 253 260
Group 26
Group of permutations 26 234
Group, braid 140 264 265
Group, compact 201
Group, complex linear 203
Group, cyclic 85
Group, Heisenberg 104 108 111 116 123
Group, Lorentz 202
Group, orthogonal 202
Group, Poincare 202
Group, rotation 201
Group, semisimple 201
Group, symmetric 26 234
Group, unitary 203
Hamiltonian, approach to Markov chains 61
Harmonic analysis 122
harmonic oscillator 221
Heaviside function 195
Heisenberg, group 104 108 111 116 123
Helmholtz free energy 247
Hermite polynomials 178
Hermitian conjugate of a matrix 5
Hermitian matrix 5
Homotopy, integration by 256
Hopf algebra 120
Hypermatrix 49 136
Hypersensibility to initial conditions 66
Ideal gas 245
Idempotent number 163
Imprimitivity 48
INDEX 71
Insensibility to 56
Interpolating polynomial Lagrange 11 12
Invariants of a Lie algebra 200
Invariants of a matrix 199
Invariants, Casimir 201
Invariants, Killing 201
Inverse of a function 157
Inverse of a matrix 9 198
Inverse of a series 173
Involution 193
Ising model and circulants 87
Ising model and detailed balancing 70
Ising model, stochastic approach 58
Iterate, continuous 211 215
Jacobi identity 5
Kerner model 23
Killing — Cartan metric 201
Kronecker delta 85
Lagrange, interpolation 11 12
Lagrange, series inversion 171
Lah number 163
Law, Gibbs — Di Marzio 34 39 78
Lee-Yang, circle theorem 272
Lee-Yang, matrix 274
Lee-Yang, phase transition theory 270
Legendre polynomials 178
Leibniz, formula 172
Lie algebra 5
Lie algebra invariants 200
Lie derivative 128
Liouville, canonical form 128 138
Liouville, equation 127
Lissajous curve 221
Logarithmic Bell polynomials 164
Logistic map 166 219
Реклама