|
|
Ðåçóëüòàò ïîèñêà |
Ïîèñê êíèã, ñîäåðæàùèõ: Hamiltonian
Êíèãà | Ñòðàíèöû äëÿ ïîèñêà | Kogut J.B., Stephanov M.A. — The Phases of Quantum Chromodynamics: From Confinement to Extreme Environments | | Heinbockel J.H. — Introduction to tensor calculus and continuum mechanics | 208 | Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 1) | 1927, 1928, 1948 | Falconer K. — Fractal Geometry. Mathematical Foundations and applications | 190—191 | Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 271.F 351.D 442.D | Falconer K. — Fractal Geometry: Mathematical Foundations and Applications | 207—208 | Evans L.C. — Partial Differential Equations | 119, 557 | Arrowsmith D.K., Place C.M. — Dynamical systems. Differential equations, maps and chaotic behaviour | 98, 148 | Meirovitch L. — Methods of analytical dynamics | 94 | Olver P.J. — Equivalence, Invariants and Symmetry | 31, 102,256 | Oprea J. — Differential Geometry and Its Applications | 296 | Lee J.M. — Differential and Physical Geometry | 500 | Allen M.P., Tildesley D.J. — Computer simulation of liquids | 6, 71, 229, 233, 270 | Schweizer W. — Numerical quantum dynamics | 6 | Frenkel D., Smit B. — Understanding Molecular Simulation: from algorithms to applications | 23, 481 | Cox D., Katz S. — Mirror symmetry and algebraic geometry | 412—415, 430 | Felsager B. — Geometry, particles and fields | 65 | Baker A. — Matrix Groups: An Introduction to Lie Group Theory | 118 | Majid S. — Foundations of Quantum Group Theory | 72, 196, 217, 272, 348, 401, 404, 409, 456 | Haynes T.W., Hedetniemi S.T., Slater P.J. — Fundamentals of domination in graphs | 11 | O'Malley R.E. — Introduction to Singular Perturbations | 141 | Agrachev A.A., Sachkov Yu.L. — Control theory from the geometric viewpoint | 155 | Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 2) | 1927, 1928, 1948 | Weinstock R. — Calculus of variations with applications to physics & engineering | 76—77, 79, 82 | Lavendhomme R. — Basic Concepts of Synthetic Differential Geometry | 220 | Greenberg H.J. — A Simplified Introduction to LaTeX | 66 | Nayfeh A.H. — Perturbation Methods | 223, 224, 225 | Ward R.S., Wells R.O. — Twistor geometry and field theory | 280 | Goldstein H., Poole C., Safko J. — Classical mechanics | 334—353 | Liboff R. — Kinetic Theory | 4, 61, 66, 139, 254, 262, 272, 274, 396, 399 | Nayfeh A.H., Mook D.T. — Nonlinear Oscillations | 27, 174, 284, 424 | Atkins P.W., Friedman R.S. — Molecular Quantum Mechanics | 72, 76 | Landsman N.P. — Mathematical topics between classical and quantum mechanics | 15 | Mukamel S. — Principles of Nonlinear Optical Spectroscopy | 12, 56, 218, 245 | Debnath L. — Nonlinear water waves | 196—198 | Jaswon M.A. — The Theory of Cohesion. An Outline of the Cohesive Properties of Electrons in Atoms, Molecules and Crystals | 22 | Pugovecki E. — Quantum mechanics in hilbert space | 286 | Krotov V. — Global Methods in Optimal Control Theory | 249 | Davies E. — Spectral Theory and Differential Operators | 188 | Debnath L., Mikusinski P. — Introduction to Hilbert Spaces with Applications | 339, 353, 431 | Debnath L. — Nonlinear Partial Differential Equations for Scientists and Engineers | 102, 145, 150 | Hand L.N., Finch J.D. — Analytical Mechanics | 21—22, 175, 178, 180, 211, 234, 29—30, 551 (prob) | Marmo G., Skagerstam B.S., Stern A. — Classical topology and quantum states | 11 | Safran S.A. — Statistical thermodynamics on surfaces, interfaces and membranes | 9, 12, 21, 61, 63, 84, 93, 94, 137, 205 | Lim Ch., Nebus J. — Vorticity, Statistical Mechanics, and Monte Carlo Simulation | 7, 68, 79, 83—90, 92, 93, 103, 105, 111, 113, 116—118, 125, 128, 141, 187, 215, 216, 225, 241, 246, 254, 256 | Lynch S. — Dynamical Systems with Applications Using Mathematica® | 112, 425 | Godsil C., Royle G. — Algebraic Graph Theory | 45 | Hall G.R., Lee — Continuous dynamical systems | 72, 101, 112-114 | Borwein P., Choi S., Rooney B. — The Riemann Hypothesis | 114 | Kac V. — Vertex Algebra for Beginners | 28, 72 | Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 576 | Debnath L. — Linear Partial Differential Equations for Scientists and Engineers | 382 | Prugovecki E. — Quantum Mechanics in Hilbert Space | 286 | Dacorogna B. — Direct Methods in the Calculus of Variations | 120, 138, 142, 143 | Fleming W.H., Soner H.M. — Controlled Markov Processes and Viscosity Solutions | 12 | Drmac Z. (ed.), Tutek Z. (ed.), Marusic M. (ed.) — Proceedings of the Conference on Applied Mathematics and Scientific Computing | 317 | Samelson R.M., Wiggins S. — Lagrangian Transport in Geophysical Jets and Waves: The Dynamical Systems Approach | 1, 86 | Allouche J.-P., Shallit J. — Automatic Sequences: Theory, Applications, Generalizations | 457 | Roman P. — Introduction to quantum field theory | 69, 122 | Krupkova O. — The Geometry of Ordinary Variational Equations | 17, 67, 70, 71, 210, 210 | Bollobas B. — Modern Graph Theory | 343 | Reed M., Simon B. — Methods of Modern mathematical physics (vol. 3) Scattering theory | 303 | Greiner W. — Quantum mechanics. An introduction | 46, 85, 117, 138, 157, 175, 205, 367 | Nagashima H., Baba Y. — Introduction to chaos: physics and mathematics of chaotic phenomena | 76, 84 | Thaller B. — Visual quantum mechanics | 94, 135 | Pytlak R. — Numerical Methods for Optimal Control Problems with State Constraints | 22 | Harrison W.A. — Elementary electronic structure | 4 | Aitchison I.J.R., Hey A.J.G. — Gauge theories in particle physics. Volume 1: from relativistic quantum mechanics to QED | 122, 124—126, 128—129, 131—133, 138—139 | Shankar R. — Basic Training In Mathematics | 273 | Chari V., Pressley A. — A Guide to Quantum Groups | 68—69 | Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 716, 771 | Balescu R. — Equilibrium and nonequilibrium statistical mechanics | 6, 16, 39, 49, 50, 53, 57, 147, 185, 298, 327 | Holden A.V. — Chaos | 79, 136, 309, 316 | Reed M., Simon B. — Methods of Modern mathematical physics (vol. 4) Analysis of operators | $303^1$ | Eschrig H. — The Fundamentals of Density Functional Theory | 13 | Bourgain J. — Global Solutions of Schrodinger Equations | 106 | Domb C., Green M.S. (eds.) — Phase Transitions and Critical Phenomena (Vol. 1) | 23 | Streater R.F. (Ed) — Mathematics of Contemporary Physics | 30, 34, 47, 79, 80, 102, 108, 134, 150, 152, 160, 161, 188, 198 | Kadanoff L.P. — Statistical physics | 6, 119 | Rammer J. — Quantum transport theory | 2, 20, 66 | Ramond P. — Field Theory: A Modern Primer | 66, 76, 281 | Altmann S.L. — Band Theory of Solids: An Introduction from the Point of View of Symmetry | 9 | Kohno T. — Conformal Field Theory and Topology | 2, 3 | Dorlas T.C. — Statistical mechanics, fundamentals and model solutions | 94, 239 | Griffits D.J. — Introduction to quantum mechanics | 22, 120 | Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 475 | Cantwell B.J., Crighton D.G. (Ed), Ablowitz M.J. (Ed) — Introduction to Symmetry Analysis | 98, 108 | Ito K. — Encyclopedic Dictionary of Mathematics | 271.F, 351.D, 442.D | Galindo A., Pascual P. — Quantum Mechanics Two | I 68 | Menzel D.H. — Mathematical Physics | 9, 359 | Polkinghorne J.C. — The quantum world | 30, 86, 94 | Eddington A. — Relativity Theory of Protons and Electrons | 63, 129 | Dirac P.A.M. — The Principles of Quantum Mechanics | 113, 114 | Katayama T., Sugimoto S. — Statistical Methods in Control and Signal Processing | 262 | Du D. (ed.), Pardalos P. (ed.) — Handbook of combinatorial optimization: supplement volume A | 77, 311 | Mukamel S. — Principles of nonlinear spectroscopy | 12, 56, 218, 245 | DeWitt B.S. — The global approach to quantum field theory (Vol. 1) | 52 | Konopinski E.J. — Electromagnetic fields and relativistic particles | 412 | Thaller B. — The Dirac equation | 5 | Pedregal P. — Introduction to Optimization | 198 | Cleland A.N. — Foundations of nanomechanics | 7 | Kythe P.K. — Fundamental Solutions for Differential Operators and Applications | 93 | Prigogine I. — Nonequilibrium statistical mechanics | 4, 13, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 39, 41, 62, 86, 114, 197, 270, 277 | Bhagavantam S., Venkatarayudu T. — Theory of Groups and Its Application to Physical Problems | 57 | Holden A.V. — Chaos | 79, 136, 309, 316 | Thirring W.E. — Classical Mathematical Physics: Dynamical Systems and Field Theories | 43 | Aubert G., Kornprobst P. — Mathematical Problems in Image Processing: Partial Differential Equations And the Calculus of Variations | 47 | Thirring W.E. — Course in Mathematical Physics: Classical Dynamical System, Vol. 1 by Walter E. Thirring | 40 | Heitler W. — Elementary Wave Mechanics With Applications to Quantum Chemistry | 26 | Bailin D., Love A. — Introduction to Gauge Field Theory | 22 | Stanley H.E. — Introduction to phase transitions, and critical phenomena | 36f, 134, 137, 161 | Held A. (ed.) — General relativity and gravitation. 100 years after the birth of Albert Einstein (volume 1) | 395, see also “Canonical analysis”, “Lagrangian” | Libai A., Simmonds J.G. — The Nonlinear Theory of Elastic Shells | 299 | Tabor M. — Chaos and Integrability in Nonlinear Dynamics: An Introduction | 96 | Strichartz R.S. — The way of analysis | 505 | Sanders J.A., Verhulst F. — Averaging methods in nonlinear dynamical systems | 132—134, 136, 137, 141, 143—147, 150, 152—154, 163, 164, 167, 168, 170, 174, 223, 233, 235 | Tung W.K. — Group Theory in Physics: An Introduction to Symmetry Principles, Group Representations, and Special Functions | 2, 122, 149, 183, 246, 259 | Matveev V.B., Salle M.A. — Darboux Transformation and Solutions | 25, 26 | Unertl W.N. — Physical Structure | 108, 146 | Cracknell A.P., Wong K.C. — The Fermi Surface: Its Concept, Determination and Use in the Physics of Metals | 44, 82, 197, 426, 432—434, 445, 446—447, 449, 453, 456, 462, 463 | Atkinson D., Johnson P.W. — Exercises in Quantum Field Theory: A Self-Contained Book of Questions and Answers | 83, 95, 97 | Fulling S. — Aspects of Quantum Field Theory in Curved Spacetime | 2, 8—10, 20, 33, 62—63, 68, 92—93, 120, 198, 230, 242, 245—246, 284 | Kienzler R., Herrmann G. — Mechanics of material space: with applications to defect and fracture mechanics | 7, 136—140, 153—159, 250, 265 f. | Peleg Y., Pnini R., Zaarur E. — Schaum's outline of theory and problems of quantum mechanics | see "Operator" | Dubrovin B.A., Fomenko A.T., Novikov S.P. — Modern Geometry - Methods and Applications. Part 1. The Geometry of Surfaces, Transformation Groups and Fields | 338 | Held A. (ed.) — General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein, Vol. 2 | 395 (see also “Canonical analysis”, “Lagrangian”) | HyperChem Computational Chemistry | 162, 217 | Kubo R. — Statistical Mechanics: An Advanced Course with Problems and Solutions | 2, 3 | Mercier A. — Analytical and canonical formalism in physics | 1, 8, 97, 99, 100, 102, 103, 114, 117, 124, 125, 126, 128, 146, 166ff, 193, 199, 203ff | Dirac P.A.M. — The Principles of Quantum Mechanics, Vol. 27 | 113, 114 | Schiff L.I. — Quantum mechanics | 127 | Galindo A., Pascual P. — Quantum Mechanics One | 68 | Visser M. — Lorentzian wormholes. From Einstein to Hawking | 68, 354—356, 360, 361 | Sinai Ya.G. — Theory of Phase Transitions: Rigorous Results | 1 | Mattheij R.M.M., Molenaar J. — Ordinary Differential Equations in Theory and Practice (Classics in Applied Mathematics) (No. 43) | 288 | Logan J.D. — Invariant Variational Principles | 37, 107 | Sattinger D.H., Weaver O.L. — Lie groups and algebras with applications to physics, geometry, and mechanics | 41 | Fomenko À.Ò., Mishehenko A.S. — A Short Course in Differential Geometry and Topology | 257 | Lee T.D. — Practicle physics and introduction to field theory | 3 | Englert B.G. (Ed) — Quantum Mechanics | 183 (see also “Hamilton operator”) | Abdullaev S.S. — Construction of Mappings for Hamiltonian Systems and Their Applications | 1 | Balian R. — From Microphysics to Macrophysics: Methods and Applications of Statistical Physics (vol. 1) | 58, 60—61, 73—74, 82—83, 255, 340, 350, 367—368 | Callaghan P. — Principles of Nuclear Magnetic Resonance Microscopy | 28 | Birrell N.D., Davies P.C.W. — Quantum Fields in Curved Space | 14—16, 18, 25, 299 | Griffits D. — Introduction to elementary particles | 146, 151—153, 158, 160, 252 | Jeffrey A., Taniuti T. — Mathematics in Science and Engineering: volume 9. Non-linear wave propagation | 42, 46, 184, 193 | Bryan G.H. — Thermodynamics: an introductory treatise | 29 | Kenzel W., Reents G., Clajus M. — Physics by Computer | 48, 51, 71, 73, 75, 119, 149 | Deligne P., Kazhdan D., Etingof P. — Quantum fields and strings: A course for mathematicians (Vol. 1) | 20, 172, 480, 537ff | Betts J.T. — Practical Methods for Optimal Control Using Nonlinear Programming | 82 | Reed M., Simon B. — Methods of Modern mathematical physics (vol. 2) Fourier analysis, self-adjointness | 303 | Bratteli O., Robinson D.W. — Operator Algebras and Quantum Statistical Mechanics (vol. 2) | see “Operator, Hamiltonian” | Audin M. — Torus Actions on Symplectic Manifolds | 58 | Berge C. — Graphs and Hypergraphs | 186 | Chan Man Fong C.F., De Kee D., Kaloni P.N. — Advanced Mathematics for Engineering and Sciences | 814 | Bayfield J.E. — Quantum Evolution: An Introduction to Time-Dependent Quantum Mechanics | 7 — 9 | Mehta M.L. — Random Matrices | 3, 33 | ter Haar D. — Elements of Statistical Mechanics | 39, 217, 291, 298 | Economou E.N. — Green's Functions in Quantum Physics | 384, 385 | Butcher J. — Numerical Methods for Ordinary Differential Equations | 5 | D'Inverno R. — Introducing Einstein's Relatvity | 115, 117, 119 | Libermann P., Marle Ch.M. — Symplectic Geometry and Analytical Mechanics | 98, 102, 109, 490 | Greiner W., Mueller B. — Quantum mechanics: symmetries | 21 ff. | Hollander Fr. — Large deviations | X.1 | Lawden D.F. — An Introduction to Tensor Calculus, Relativity and Cosmology | 49 | Gilmore R. — Lie Groups, Lie Algebras and Some of Their Applications | 158, 167, 168, 170, 171, 176, 423—425, 427—430 | Siegel W. — Fields | IA1, IIIA,VA1, VIA1 | Nayfeh A.H., Pai P.F. — Linear and Nonlinear Structural Mechanics | 74, 112 | Scully M.O., Zubairy M.S. — Quantum optics | 4, 12, 47, 54, 149, 178, 190, 196, 286 | Prigogine I. — From being to becoming: time and complexity in the physical sciences. | 22, 24, 31—32, 40, 49, 57—58, 68, 69, 191 | Naidu D.S., Rao A.K. — Singular Perturbation Analysis of Discrete Control Systems | 131 | Oprea J. — Differential Geometry and Its Applications | 368, 369 | Bird R.B., Armstrong R.C., Hassager O. — Dynamics of polymeric liquids (Vol. 1. Fluid mechanics) | (2)15, 37, 249 | Cotterill R.M.J. — Biophysics: An Introduction | 353 | Basdevant J.-L., Dalibard J. — Quantum Mechanics | 44, 103, 298 | Prigogine I. — Proceedings of the International Symposium on Transport. Processes in Statistical Mechanics, held in Brussels,. August 27-31, 1956 | 23, 25, 244, 313 | Grosche C., Steiner F. — Handbook of Feynman path integrals | 1-3, 6, 40, 44, 50, 59, 61, 67, 69, 72, 77 | Adler S.L. — Quantum theory as emergent phenomenon | (see Effective Hamiltonian or trace) | Christensen S.M. — Quantum theory of gravity | 254, 268, 301, 317, 319, 327, 328, 389, 410, 417, 436 | Aubert G., Kornprobst P. — Mathematical Problems in Image Processing: Partial Differential Equations And the Calculus of Variations | 52 | Haller G. — Chaos Near Resonance | 7 | Amit D.J. — Field theory, the renormalization group, and critical phenomena | 34—40 | Mangiarotti L., Sardanashvily G. — Connections in Classical and Quantum Field Theory | 131 | Perina J., Hradil Z., Jurco B. — Quantum optics and fundamentals of physics | 8 | Phillips P. — Advanced Solid State Physics | 151, 152, 153, 154, 156, 157, 164, 165, 214, 216, 239, 249, 251, 252, 271, 362 | Woodhouse N.M.J. — Geometric quantization | 9, 17, 39, 140 | Carmeli M. — Classical Fields: General Gravity and Gauge Theory | 578 | Attard P. — Therodynamics and Statistical Mechanics: Equilibrium by Entropy Maximisation | 84, 352 | Gatermann K. — Computer Algebra Methods for Equivariant Dynamical Systems | 69, 121 | Padmanabhan T. — Cosmology and Astrophysics through Problems | 15 | Landau L.D., Lifshitz E.M. — The classical theory of fields | 28 | Lee J.M. — Differential and physical geometry | 500 | Baez J.C., Muniain J.P. — Gauge theories, knots, and gravity | 268, 425, 426, 430 | Astfalk G. — Applications on Advanced Architecture Computers | 3, 20, 94—98 | Corson E.M. — Perturbation Methods in the Quantum Mechanics of N-Electron Systems | 32, 41 | Alekseevskij D.V., Vinogradov A.M., Lychagin V.V. — Geometry I: Basic Ideas and Concepts of Differential Geometry | 88 | Messiah A. — Quantum mechanics. Volume 1 | 33, 68—71, 120, 310 | Denn M. — Optimization by variational methods | 106, 109, 136, 184, 232, 297, 316, 328, 335, 378 | Seymour L. — Schaum's Outline of Theory and Problems of Discrete Math | 195 | Habib M., McDiarmid C., Ramirez-Alfonsin J. (eds.) — Probabilistic Methods for Algorithmic Discrete Mathematics | 170—172 | Novikov S.P., Fomenko A.T. — Basic elements of differential geometry and topology | 433 | Prigogine I. — Monographs in Statistical Physics And Thermodynamics. Volume 1. Non-equilibrium statistical mechanics | 4, 13, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 39, 41, 62, 86, 114, 197, 270, 277 | Hermann R. — Differential geometry and the calculus of variations | 130—132, 137—141, 154, 155, 178, 182, 185, 186, 215, 225, 226 | Riley, Hobson — Mathematical Methods for Physics and Engineering | 855 | Callen H. — Thermodynamics and an Introduction to Thermostatistics | 145 | Domb C.M., Green M. — Phase Transitions and Critical Phenomena: Series Expansion for Lattice Models, Vol. 3 | 246, 247, 248, 252, 269, 271, 284, 291, 301, 326, 358, 363, 418, 464, 571, 572, 581 | Leuchs G., Beth T. (eds.) — Quantum Information Processing | 134, 135, 137 | Schechter M. — Operator methods in quantum mechanics | 7 | Barnett S.M., Radmore P.M. — Methods in Theoretical Quantum Optics | 5, 11—13, 16, 32, 39, 53, 129, 145, 153, 162, 180 | Craven B.D. — Mathematical Programming and Control Theory | 79, 82 | Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 169, 269 | Dickey L.A. — Soliton Equations and Hamiltonian Systems | 26 | Dembo A., Zeitouni O. — Large deviations techniques and applications | 299 | Kac V. — Vertex Algebras for Beginners | 28, 72 | Beard D.B. — Quantum Mechanics | 69 | Atkins P. — Molecular Quantum Mechanics | 245 | Marathe K.B., Martucci G. — The mathematical foundations of gauge theories | 25 | Roepstorf G. — Path integral approach to quantum physics | 48, 50, 171, 178, 190, 192, 207 | Amrein W.O., Sinha K.B., Jauch J.M. — Scattering Theory in Quantum Mechanics: Physical Principles and Mathematical Methods | 111, see also "Free and total Hamiltonian" | Ruelle D. — Statistical Mechanics | 8, 60 | Altarelli G., Winter K. — Neutrino Mass | 20 | Dirac P.A.M. — The Principles of Quantum Mechanics | 113, 114 | Bornemann F. — Homogenization in Time of Singularly Perturbed Mechanical Systems (Lecture Notes in Mathematics, 1687) | 85, 128 | Taylor M.E. — Partial Differential Equations. Nonlinear Equations (vol. 3) | 554 | Siegel W. — Fields | IAl, IIIA, VA1, VIA1 | Yap H.P. — Total Colourings of Graphs | 2 | Carroll R.W. — Mathematical physics | 29, 34 | Ram-Mohan R. — Finite Element and Boundary Element Applications in Quantum Mechanics | 7 | Greiner W., Neise L., Stöcker H. — Thermodynamics and statistical mechanics | 128 | Greiner W., Reinhardt J. — Field quantization | 5 | Tzenov S.I. — Contemporary Accelerator Physics | 3 | Saito Y. — Statistical physics of crystal growth | 24 | Wolfgang K. H. Panofsky, Phillips Panofsky, Melba Panofsky — Classical Electricity and Magnetism | 427 | Gould H., Tobochnik J., Christian W. — An introduction to computer simulation methods | 82, 83, 173—181, 637, 654, 656 | Ercolani N.M., Gabitov I.R., Levermore C.D. — Singular limits of dispersive waves | 61—62, 105—107, 112, 173, 174, 183, 275—280, 286, 287, 289, 290, 298, 299, 305 | Wiedemann H. — Particle accelerator physics II | 1, 4 | McGuire J.H. — Electron correlation dynamics in atomic collisions | 11, 18, 57, 125, 138, 139 | Rosser G. — Interpretation of classical electromagnetism | 154 | Thaller B. — The Dirac equation | 5 | Faddeev L.D., Takhtajan L., Reyman A.G. — Hamiltonian methods in the theory of solitons | 15 | Rudzikas Z. — Theoretical Atomic Spectroscopy | 6 | Luenberger D.G. — Introduction to dynamic systems | 396, 417, 429 | Wiggins S. — Chaotic transport in dynamical systems | 135 | Lane S.M. — Mathematics, form and function | 282 | Hirsch M.W., Smale S. — Differential Equations, Dynamical Systems, and Linear Algebra | 291, 293 | Beard D.B. — Quantum Mechanics | 69 | Schreiber E. — Femtosecond real-time spectroscopy of small molecules and clusters | 41, 64, 65, 111 | Atkins P.W., Friedman R.S. — Molecular Quantum Mechanics | 13, 487 | Iwasaki Katsunon, Kimura H., Shimomura S. — From Gauss to Painleve: A Modern Theory of Special Functions | 18 | Hinrichsen D., Pritchard A. — Mathematical Systems Theory I: Modelling, State Space Analysis, Stability and Robustness | 33, 217, 246 | Frankel T. — The geometry of physics: an introduction | 147 | Benfatto G., Gallavotti G. — Renormalization Group | 5, 12 | Datta S. — Electronic transport in mesoscopic systems | 133, 142—147, 151—153, 223—224, 301, 302 | Goldsmid J., Drabble H. — Thermal Conduction in Semiconductors | 37—38 | Cvitanovic P., Artuso R., Dahlqvist P. — Classical and quantum chaos | 481, 487 | Deligne P., Kazhdan D., Etingof P. — Quantum fields and strings: A course for mathematicians | 20, 172, 480, 537ff | Deligne P., Etingof P., Freed D. — Quantum fields and strings: A course for mathematicians, Vol. 2 (pages 727-1501) | 20, 172, 480, 537ff | Biedenharn L.C., Louck J.D. — Angular momentum in quantum physics | 270, 279, 430, 461, 462, 523, 527, 528, 536, 537, 554, 582, 594 | Blum E.K., Lototsky S.V. — Mathematics of Physics and Engineering | 94, 363 | Moriyasu K. — An Elementary Primer for Gauge Theory | 54 | Zeidler E. — Applied Functional Analysis: Applications to Mathematical Physics | 328, 371, 418 | Greiner W. — Relativistic quantum mechanics. Wave equations | 285 | Borówko M. (ed.) — Computational Methods in Surface and Colloid Science | 92, 95, 98, 100, 101, 110, 113—115, 255, 269, 272, 277, 443, 448, 470, 473, 512, 645, 656, 658, 660, 664, 802, 804, 806—812, 815, 817, 818, 835, 836, 846, 858, 859, 864 | Kruegel E. — The Physics of Interstellar Dust | 175ff, 188, 189, 208 | Greiner W., Neise L., Stocker H. — Thermodynamics and statistical mechanics | 128 | Vafa C., Zaslow E. — Mirror symmetry | 147, 171, 173, 174, 282 | Schiff L.I. — Quantum Mechanics | 155, 174 | Adler S.L. — Quaternionic Quantum Mechanics and Quantum Fields | 19, 36—40, 45—49, 53, 68—70, 76, 94, 113, 307n.2, 431, 499—500 | Lasota A., Mackey M.C. — Probabilistic Properties of Deterministic Systems | 187 | Barut A.O. — Electrodynamics and Classical Theory of Fields and Particles | 65, 122 | Ticciati R. — Quantum field theory for mathematicians | 4 | Hartmann A.K., Rieger H. — Optimization Algorithms in Physics | 62, 74, 80, 87, 92, 94, 98, 129, 133, 136, 138, 139, 186, 193, 196, 255 | Greiner W. — Classical mechanics. Systems of particles and hamiltonian dynamics | 342 | Williams C.P., Clearwater S.H. — Explorations in quantum computing | 62, 63, 72, 73, 74, 76, 84, 85, 86, 87, 89, 106, 107, 108, 109, 110, 111, 112, 144, 213, 250 | Lemm J.C. — Bayesian field theory | 115, 197, 257, 259—261, 283, 288, 300, 304, 310 | Pier J.-P. — Mathematical Analysis during the 20th Century | 147, 229 | Collatz L. — Functional analysis and numerical mathematics | 96 | Brown L., Dresden M., Hoddeson L. — Pions to quarks: Particle physics in the 1950s | 609—611 | Berman G.P., Doolen G.D., Mainieri R. — Intnoduction to Quantum Computers | 73, 111, 120, 168 | Hassani S. — Mathematical Methods: for Students of Physics and Related Fields | 747—749 | Peszat S., Zabczyk J. — Stochastic partial differential equations with Levy noise: An evolution equation approach | 308 | Wang D. (ed.), Zheng Z. (ed.) — Differential Equations with Symbolic Computations | 308 | Constantinescu F., Magyari E. — Problems in quantum mechanics | 338 | Minlos R.A. — Introduction to Mathematical Statistical Physics | 3, 68 | Rodberg L.S., Thaler R.M. — Introduction to the quantum theory of scattering | 1 | Foulds L.R. — Combinatorial optimization for undergraduates | 214 | Glimm J., Jaffe A. — Quantum Physics: A Functional Integral Point of View | 4, 12ff, 57ff, 110ff | Prikarpatsky A.K., Taneri U., Bogolubov N.N. — Quantum field theory with application to quantum nonlinear optics | 7 | Mantegna R.N., Stanley H.E. — An introduction to econophysics: correlations and complexity in finance | 88 | ter Haar D. — Elements of Statistical Mechanics | 39, 217, 291, 298 | Malyshev V.A., Minlos R.A. — Gibbs Random Fields: Cluster Expansions (Mathematics and its Applications) | 16 | Groesen E., Molenaar J. — Continuum Modeling in the Physical Sciences (Monographs on Mathematical Modeling and Computation) | 151, 155, 191 | Frankel T. — The geometry of physics: An introduction | 147 | Cercignani C. — Rarefied Gas Dynamics | 216 | Kleinert H. — Gauge fields in condensed matter (part 2) | 25, 161 | Flanders H. — Differential Forms with Applications to the Physical Sciences | 166 | Ascher U., Petzold L. — Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations | 32 | Ehrenberg W. — Electric Conduction in Semiconductors and Metals | 82, 152, 181, 132, 184 | Kane G.L. — Modern elementary particle physics | 3, 12, 20 | Petzold L. — Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations | 29 | Wiedemann H. — Particle Accelerator Physics I: Basic Principles and Linear Beam Dynamics | 166, 279, 282 | Falconer K. — Fractal geometry: mathematical foundations and applications | 207—208 | Reichl L.E. — Modern Course in Statistical Physics | 287 | Stamatescu I., Seiler E. — Approaches to Fundamental Physics | 400, 410 | Ichimaru S. — Statistical Plasma Physics, Volume I: Basic Principles (Frontiers in Physics, Vol 87) (v. 1) | 263 | Bird R.B., Curtiss C.F., Armstrong R.C. — Dynamics of Polymeric Liquids. Vol. 2. Kinetic Theory | (2)15, 37, 249 | Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 169, 269 | Perina J., Hradil Z., Jurco B. — Quantum optics and fundamentals of physics | 8 | Mac Lane S. — Mathematics: Form and Function | 282 | Thirring W., Harrell E.M. — Classical mathematical physics. Dynamical systems and field theory | 43 | Prigogine I. (ed.) — Advances in Chemical Physics. Volume XIX | 326, 328, 346, 348 | Badii R., Politi A. — Complexity: Hierarchical structures and scaling in physics | 120 | Lindblat G. — Non-equilibrium entropy and irreversibility | 10 | Logan J. — Applied Mathematics: A Contemporary Approach | 128, 133, 136, 435, 437 | Kalckar J. — Foundations of Quantum Physics I (1926 - 1932), Volume 6 | 128, 154, 162, 348 | Kittel C., Knight W., Ruderman M. — Berkeley physics course 1. Mechanics | 145 | Edwards D.A., Syphers M.J. — An introduction to the physics of high energy accelerators | 129 | Jost J. — Bosonic Strings: A mathematical treatment | 3 | Brandt S., Dahmen H.D. — Quantum mechanics on the personal computer | 20, 116 | Iwamoto M., Chen-Xu W. — The Physical Properties of Organic Monolayers | 150 |
|
|