Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Prigogine I. — Monographs in Statistical Physics And Thermodynamics. Volume 1. Non-equilibrium statistical mechanics
Prigogine I. — Monographs in Statistical Physics And Thermodynamics. Volume 1. Non-equilibrium statistical mechanics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Monographs in Statistical Physics And Thermodynamics. Volume 1. Non-equilibrium statistical mechanics

Автор: Prigogine I.

Аннотация:

Statistical mechanics or statistical thermodynamics is a branch of physics that applies probability theory, which contains mathematical tools for dealing with large populations, to the study of the thermodynamic behavior of systems composed of a large number of particles. Statistical mechanics provides a framework for relating the microscopic properties of individual atoms and molecules to the macroscopic bulk properties of materials that can be observed in everyday life, thereby explaining thermodynamics as a result of the classical- and quantum-mechanical descriptions of statistics and mechanics at the microscopic level.


Язык: en

Рубрика: Физика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1962

Количество страниц: 338

Добавлена в каталог: 08.04.2013

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Action variable      25 26 27 28 29 30 31 39 67 80 82
Analytic continuation      174 176 177 178 228
Angle variables      25 26 27 28 29 30 31 39 67 68 80 82
Angular frequencies      27
Anharmonic forces      4 36 80
Anharmonic solid      36 37 41 60 67 297
Articulation point      250 251 254
basic structure      221
Bessel functions      78 79 283 286
Black-body radiation      67
Bogolioubov’s theory      3 241
Boltzmann distribution      126
Boltzmann factor      127
Boltzmann’s equation      1 2 3 90 91 92 93 94 95 107 124 128 135 137 196 211 216 222 223 234 239 263
Born approximation      45 93 118 192
Bose gas      7
boundary conditions      22 23
Brillouin zone      38
Brownian motion      66 67 73 75 78 80 82 84 85 94 95 97 108 209 210 216 236 289
Canonical distribution      73 108 247 249 299
Canonical equations      6 13 15
Cauchy integral      173 175 178 179 180 183 186 269
Causality      276 295 296
Causality, condition      8 122
Characteristic function      27
Cluster expansion      147 149
Coarse grained density      146
Coefficient of friction      (see Friction coefficient)
Collective effects      196 208
Collision parameter      125
Continuity equation      63
Convolution theorem      227 228
Correlations      (see Dynamics of correlations)
Coulomb interaction      103 104 209
Creation diagram      226 237
Creation region      194
Cross section      50 125
Cycles      49 50 56 57 179 190
Cyclic conditions      37
Cyclic variables      26 27
Debye cloud      209
Debye frequency      53 54
Debye interaction (or Debye-Hiickel interaction)      103 104 197 210
Debye length      103 104 197 210
Density matrix      256 257 258
Density operator      256 257 264
Destruction diagram      226 227
Destruction region      188 194 228 236
Destruction vertex      188 189
Detailed balance, principle of      252
Diagonal fragments      57 59 131 176 177 178 188 194 226 244
Diagonal fragments, homogeneous      220
Diagonal fragments, inhomogeneous      220
Diagonal fragments, pseudo      213 220 221
Diagonal singularity      305 306 307
Difference operator      (see Displacement operator)
Diffusion equation      63 79 83 99
Displacement operator      34 118 260
Dissipativity condition      265 266—269
Dynamical friction      99 100 101
Dynamical reversibility      20
Dynamics of correlations      6 8 34 48 49 90 154 157 181 183 185 194 195 234 235 236 237 238 246 250 256
Electrostatic interaction      102
Energy, conservation of      62 263 266
Energy, equipartition of      73 80
Energy, fluctuations      74 80 290
Ensemble      7
Ensemble, representative      14
Ensemble, theory      3
entropy      1
Error function      96
Excitations      7 144
Excited states      47
Factorization theorems      (see Fourier coefficient)
Feynman's path integral      122
Fokker — Planck equation      63 64 81 82 85 95 99 111 196 209 210
Fourier coefficient, factorization theorem for      217 218 240
Fourier heat equation      79
Friction coefficient      75 84 100 101
Fundamental solution      (see Green’s function)
Gaussian distribution      83
Gaussion processes      81 82
Generating function      26 28
Generic distribution function      139
Gibbs ensemble      14
Green’s function      76 77 78 81 112 120 121
Ground state      7
H-Theorem      1 5 9 61 71 106 107 111 226 244—256 264
Hamiltonian      4 13 22 23 24 25 26 27 28 29 30 31 32 33 39 41 62 86 114 197 270 277
Hamiltonian, equation      13
Hamiltonian, operator      19
harmonic oscillator      3 4 25 28 33 36 39 82 84 98 101 112
Heisenberg’s matrix      113
Hermitian operator      6 15 16 17 18 111
Intensive properties      7
Interaction representation      30 32 33 34 87 257 258 259
Invariants of motion      4 22 35 265 270 271 272 273 274 275 278
Irreversibility      1 2 8 255 256
Irreversible processes      1 2 3 4
Isotopic substitution      302
Kramer’s equation      75 83 84 85
Laguerre functions      282
Laguerre polynomials      75 76 279 286
Laplace transform      169 170 227 228
Lattice vibrations      36 101
Linked cluster      163
Liouville’s theorem or Liouville equation      1 3 5 13 15 16 19 29 30 32 34 44 87 123 126 128 140 152 170 191 257 258 260
Liouville’s theorem, operator      6 15 16 19 20 22 23 2 29 31 32 33 41 44 86 120 141 170 171 251 296
Markowian processes (or Markoff chains)      8 63 64 65 81 82 228 229 231 242
Master equation      44 59 60 64 65 66 70 88 89 107 133 134 137 191 231 262 263 291 295
Maxwell distribution      95 126 127
Mayer diagrams      152 157 253
Mean free path      212 214 224
Memory      8 228
Metrical transitivity      273 274
Molecular chaos      192 147 193
Molecular chaos, condition      91 92 108
Momentum, conservation of      87 88
Myller — Lebedoff formula      78 288
Normal coordinates      37 39 80
Normal modes      39 46 47 48 49 62 67 78 289 297 301
Occupation numbers      47
Pauli equation      263 264
Periodic boundary conditions      23 37
Phase density      5 6 7 14
Phase space      13
plasma      196 198
Poincare's theorem      265 269 273 296
Poisson bracket      14 15 16
Principal part      53
Propagator      118 119 120 122 123 124 276 295 296
Radiation theory      53
Random force      82 85
Random phase, approximation      137 147 231 264 307
Random phase, assumption      44
Random processes      8 63 65 82 83
Rayleigh-Schrodinger perturbation, method      34
Reciprocal lattice      39 40
Reduced distribution functions      138 140 141 161
Renormalization      209
Renormalization, methods      5
Representation      6
Resolvent      6 170 171 172 173 175 176 177 178
Retarded potentials      120
Reversible processes      1
Ring diagrams      198
S-matrix      113
Scale of inhomogeneity      212
Scattering diagram      179 228
Scattering matrix      118
Scattering operator      135
Scattering theory      53
SchrSdinger equation      16 19 32
Second law      1
Semi-connected diagrams      162
Singular functions      56
Specific distribution function      138
Specific distribution function, heat      80
State      6 16 34
Statistical operator      257 262
Stokes — Navier equations      213 216
Stosszahlansatz      1
thermal conductivity      61
Thermodynamical „case'\      194 238
Time inversion      20
Time scales      213 218
Transition moments      64 79 81
VACUUM      47 144 195
Van Hove's diagonal singularity, condition      305 306 307
Virial expansion      9
Wave packet      164 165 166 169
Wave vector, conservation of      87 88 262
Yon Neumann's density matrix      231 257 307
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2020
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте