Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Novikov S.P., Fomenko A.T. — Basic elements of differential geometry and topology
Novikov S.P., Fomenko A.T. — Basic elements of differential geometry and topology



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Basic elements of differential geometry and topology

Авторы: Novikov S.P., Fomenko A.T.

Аннотация:

Like algebraic geometry differential geometry is a notoriously bard subject to teach and to 'selfstudy.
Partly because it is very large and it is not easy to select a coherent basic chunk, partly because it is well developed and advanced.
On the other hand the subject is of vast importance in terms of applications especially to modern physics.

The authors have some 15 years experience in teaching a coherent course on the topic covering all the essentials. This volume is the distilled essence of their course.
Mathematics is a tool for thought A highly necessary tool in a world where both feedback and non-linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1990

Количество страниц: 498

Добавлена в каталог: 16.02.2013

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Acceleration vector      47
Action principle      361
Affine connection      210 219
Affine coordinates      210
Affine transformation      118
Algebraic operation      177
Alternation      182
Angle between two curves      2 4 26
Arc (of a curve)      7 66
Area      73 78
Atlas      128
Axial vector      195
Beltrami surface      444 445
Beltrami’s equation      126
Betti numbers      415
Binormal      56
Boundaiy of a cell      417
Boundaiy points      10
Boundary      8
Bounded region      12
Bouquet      417
Branching points      145
Bravais lattice      388
Canonical transformation      438
Cartesian coordinates      1
Cartesian space      1
Catenoid      481
Cauchy — Riemann conditions      118 311
cell      416
Cell chain      417
Cell complex      416
Chain      413
Chain boundaiy      413
Christoffel symbols      155
Ciystalline structure      385
Classical mechanics      188
Closed manifold      287
Coboundary      4143
Cochain      414
Cocycle      414
Cohomology group      402 414
Commutator      432 434
Compact manifold      287
Complex analytic functions      118
Complex linear transformation      114
Complex numbers in geometry      114
Component of a tensor      169
Cone      64
Conformal coordinates      122
Conformal Euclidean metric      122
Conformal transformation (mapping)      118 148
Connection      474
Conservation law      157
Conservative system      13
Continuous medium      172
Contraction      178
Convex boundaiy      109
Convex surface      103
Coulomb gauge      379
Covariant differentiation      209 212
Covector      154
Covering      337
Critical point      318
Crystal lattice      385
Crystallographic group      385
Curvature      47
Curvature tensor      219
CYCLE      413 418
Cylindrical coordinates      17 20
Deformation      292
Degree of a mapping      287
Derivative of a function      13
Differentiable manifold      128
Differential forms      254
Differential of area      73
Differential-geometric connection      210
Dimension (of a space)      1
Dirac monopole      478
Directional derivative      8 12 13 250
Divergence of a vector field      190 201 265
Double integral      78
Dovetail      484
Eigenvalues      96
Eigenvectors      112
Einstein equation      244
Einstein’s hypothesis      135
electric field      195
Electrical conductivity      397
Electro-magnetic field      220
Embedding      322
Energy      154
Energy conservation law      430
Energy-momentum tensor      244
Equilibrium position      303
Euclidean connection      198
Euclidean space      2
Euler characteristic      328 415
Euler — Lagrange equations      154
Euler’s theorem      112
Even permutation      186
Exact form      402
External field      365
Extremal      154
Extrinsic geometry      61
Field ofadipol      316
Field strength      220
First quadratic form      67
Flat curves      46
Flow of liquid      304
force      154
Frenet formulas      48 49
Fundamental group      328
Fundamental region (for the group)      452
Galilean transformation      368
Gauge field      219
Gauss map      318
Gauss theorem      294
Gaussian curvature      65 98
General position      299 318 324
General theory of relativity      135
Geodesic      151
Geodesic curvature      232
Gradient      8 12 188
Graph of a function      120
Gravitational field      135
Green formula      271
Group manifolds      129
Groups of motions      144
Groups of transformations      135
Hamiltonian      433
Hamiltonian equations      434
Hamiltonian gauge      379
Hamiltonian system      438
Handle of a surface      139
Harmonic function      312
Hausdorff manifolds      132 149
Helicoid      481
Henneberg surface      483
Hermidan scalar product      114
hessian      65
Hexagonal lattice      389
Holonomic constraints      19
Homology group      413
Homotopy      292
Hooke’s law      174
Hyperboloid      39
Hypersphere      39
Hypersurface      284
Ideal cystal      385
Ideal rigid body      10
Imaginary radius      39
Incidence coefficient (of a cell)      418
Incompressible flow      312
Integral of a function      78
Integral of motion      436
Integral trajectory      303
Intrinsic geometry      61
Intrinsic invariants      61
Intrinsic metric      61
Invariants      61
Isometry      449
Isothermal coordinates      114
Isotropic substance      174
Isotropic tensor      174
Jacobian      19
Jacobian matrix      19
Jacobi’s identity      55
Klein bottle      419
Lagrangian      154
Laplace equation      154
Laplace operator      118 312
Leibniz formula      56 117
Length      2 3
Lie groups      129
Lobachevskian metric      31
Lobachevskian plane      32 82
Lobachevskian space      372
Lobachevsky geometry      43
Local charts      128
Local coordinates      128
Local minimum      11
Locally convex boundaiy      109
Lorentz group      363
Magnetic field      195
Manifold      127
Manifold with boundary      295
Maxwell’s equations      195
Mean curvature      65 98
Metric invariant      61
Minimal surface      480
Minkowski space      8 33
Mobius strip      330
Momentum      154
Morse function      318
Multi-valued coordinate      16
Multi-valued functional      478
Multiple-valued algebraic function      120
Natural parameter      8 46
Negative curvature      447
Newton — Leibniz formula      279
Non — Euclidean space      343
Non-degenerate critical point      56 323
Non-singular point      62 302 323
Non-singular surface      62
Normal cross-section      99
Odd permutation      186
One-parametric transformation group      366 430
Oriented manifold      287
orthogonal matrices      52 163
Ostrogradskii formula      270
Parallel field      217
Parallel transport      229 230
Parametric equation      61
Particle charge      361
Particle mass      361
Penrose lattice      477
Periods of a closed form      409
Permutation of indices      177
Poincare model      43
Point group of crystal      392
Poisson bracket      432
Polar coordinates      20
Potential      13 136
Pressure      173
Primitive vectors      385
Principal curvature      65 98
Principal direction      96 112
Principal normal      56
Product of tensors      178
Projective place      130
Projective space      130
Proper maps      290
Pseudo — Euclidean space      8 33
Pseudo — Riemannian metric      26 134
Pseudo-sphere      34 445
Quasi-crystal      476
Quasi-lattice      477
Radius of cun'ature      47 54
Rank of the tensor      169
Region      9
Region with boundaiy      10
Region without boundaiy      10
Regular coordinates      16
Regular curve      3
Regular point      62 288
Regular surface      62
Relativistic mechanics      378
Ricci tensor      239
Riemann surface      120 138
Riemannian curvature tensor      236
Riemannian metric      25 26 134
Rotational number      291 325
Sard’s lemma      288
Scalar curvature      240
Scalar product      2
Scattering processes      371
Schwaiz surface      483
Second quadratic form      93 95
Second variation      422
simplex      411
Simply-connected space (manifold)      341
Singular boundary      416
Singular chain      416
Singular cycle      416
Singular homologies      416
Singular point      16 302 323
Singular simplex      415
Skew-symmetric metric      438
Skew-symmetric scalar product      280
Skew-symmetric tensor      182 184
Small defomiation      182
Smooth boundary      11
Smooth curve      46
Smooth homotopy      292
Smooth manifold      128
Smoothness class      132
Space curve      54
Space-like vector      9
Space-time continuum      135
Spatial reflection      369
Spherical coordinates      17 21
Stationary flow      304
Stereographic projection      40
Stokes formula      270
Strain tensor      173
Stress tensor      172
Submanifold      130
surface      61
Surface of rotation (revolution)      445
Surface tension coefficient      480
Symmetric cell      389
Symmetric connection      214
Symmetric tensor      182 184
Symmetrization      182
Symmetry group of crystal      392
Symmetry operations      392
Tangent vector      3 133
Tensor transformation law      163
Tensors      169
Time reflection      369
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте