Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Birrell N.D., Davies P.C.W. — Quantum Fields in Curved Space
Birrell N.D., Davies P.C.W. — Quantum Fields in Curved Space



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Quantum Fields in Curved Space

Àâòîðû: Birrell N.D., Davies P.C.W.

Àííîòàöèÿ:

This book presents a comprehensive review of the subject of gravitational effects in quantum field theory. Although the treatment is general, special emphasis is given to the Hawking black hole evaporation effect, and to particle creation processes in the early universe. The last decade has witnessed a phenomenal growth in this subject. This is the first attempt to collect and unify the vast literature that has contributed to this rapid development. All the major technical results are presented, and the theory is developed carefully from first principles. Here is everything that students or researchers will need to embark upon calculations involving quantum effects of gravity at the so-called one-loop approximation level.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: 1 edition

Ãîä èçäàíèÿ: 1982

Êîëè÷åñòâî ñòðàíèö: 340

Äîáàâëåíà â êàòàëîã: 10.04.2010

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Accelerated mirror      102—109 282
Accelerated observer (detecior)      40 41 48 53—55 89 90 109 110 116—127 228 279
Aciion      3 5 11 17 19 29—31 44 85 154—155 204—205 288—290 313
Aciion, effective      155ff. 184 194 205 214 222—223 238—239 298 307ff.
Adiabacic expansion      73—78 87 159 191 207—208
Adiabalic invariant      66 69
Adiabalic states      8 37 62—73 127 128
Adiabalic switching      51 52 57 104—105 293
Adiabalic vacuum      62—73 127—136 143—144 206
Adiabatic order      67ff. 127ff. 191—192 195 199—201 205—206 221—222 231—236 243
Adiabatic regularizaiion      see under “Regularization”
Analytic continuation      129 151 159ff. 193—194 248
Aniiperiodic boundary conditions      91 321 see
Anisotropic cosmology      118 142—149 239 244—245
Annihilation and creation operacors      15—18 91
anomalies      see under “Conformal anomalies” “Axial
Anomalies, anticominutators      18 20 34
Axial vector anomaly      176
Back scattering      249 251 258 260 266 280
Back-reaction (due to quantum effects)      118 142 150 215 244—248 270 279 284 287 291
Background field method      3
Bi-scalar      195 205 236
Bi-spinor      87
Bi-vector      196
Bianchi I spacetimes      142—149
big bang      6 125 142
Black hole      6 42 43 90 105 243—244 249—291
Black hole, charged      262—264 276
Black hole, entropy of      274—275 279 290
Black hole, eternal      42 43 275—283 317 319
Black hole, evaporation of      89 228
Black hole, explosion of      271—273
Black hole, gamma rays from      273
Black hole, luminosity of      260 262 270
Black hole, quantum      249—291
Black hole, radio bursts from      273
Black hole, rotating      261 276 287
Black hole, specific heat of      270
Black hole, super-radiance      262 270 274
Black hole, temperature of      257 263 270
Black hole, thermodynamics of      6 274—275
Bogolubov coefficients      46—48 61 69 108—109 146 247 251 259 295—296 301 315—327
Bogolubov transformation      46 58 72 107—109 115—126 126 135 228 249—250 257 277—278 285 294 301 316
Boltzmann's constant      26
Bose statistics      13
Bosons      1 260 262 270
Boundaries      89 96—109 222—224 296
Casimir effect      89 100—102 229—230 321
Causality      216
Collapse of a star      41—42 105 249 250—264 265—267 280—281
Commutation relations      12 45 82 278
Commutators      12 20 27—29
Conformal (Penrose) diagrams      36—43 U2 138—140 256 272 276 286—287
Conformal anomalies      8 87 151 173—189 189 193 201ff. 233 285 309 312 314
Conformal coupling (of scalar field)      44
Conformal invariance      44 62 79—81 123ff. 146 174 173—189 203 312—323 319
Conformal Killing vector      43 79 124 138 188 233 237
Conformal time      59 80 120 126ff. 152 242
Conformal transformations      36—44 79—80 109 113 117 138—142 173ff.
Conformal vacuum      37 79—81 124ff. 227ff.
Conformally flat spacetime      43 50 59 62 79 81 181—184 243
Conformally trivial system      62 79 102 114 146 181 183 190 200 225 234—237
Cosmic censorship hypothesis      263 291
Cosmological constant      5 154 214 308
Covariant conservation (of stress-tensor)      184 216 283 285
Cut-off regularization      see under “Regularization”
de Siller group      45 130 132 138 191
De Sitter space      118 129—138 140—141 186—187 190ff. 230 279 291 307
Density matrix      279—280
Density operator      26
DeWitt — Schwinger expansion      73—81 152 158ff. 171 191 201 212 218—220 231—232 304
DeWitt — Schwinger representation      37 75ff. 87 157ff. 190 215
Dimensional continuation      16 151 159ff see
Dirac equation      17 18 85
Dirac matrices      17 18 83 85 318
Divergences      4 5 16 153 see
Divergences, infrared      95 174 200
Divergences, surface      98 223—224
Divergences, ultraviolet      91 159 174 177 211
Dixac adjoint      17
Effective action      see under “Action”
effective Lagrangian      see under “Lagrangian”
Einstein equation      2 3 7 41—42 150 154 189 202 204 209 214 224 270 275—276
Einstein Universe      49 122ff. 134ff. 185—187 192—193
electromagnetic field      19—20 31 80 85 97—102 154 171 179—180 222 224 261
Energy      14—15 see also under “Stress-tensor”
Energy conditions      246 274—275
Energy, negative      228—229 246 269 271 275
Energy, of vacuum      4 15 16 91ff. 152
entropy      90 102 118 228
Entropy, in cosmology      244—245
Entropy, of black hole      274—275 279 290
Euclideanization of spacetime      10 25 34—35 141 288
Euler — Poincare characteristic      141
Event horizon      see under “Horizon”
Evolution matrix      296
fermions      1 17 260 285
Feynman gauge      19 24
Feynman propagator      2111
Flat spacetime      89—117
Fock space representation      13—18 45—47 55 91—92 113—124 152 216 294—295 300 315—326
Friedmann cosmology      70—71
Gauge fixing term      19 24 32 85—86 172
Gauge transformations      19 31—32
Gauss — Bonnet theorem      162
General covariancc      45
General relativity      1 5 45 161
Generating functional      29ff. 93 157 288 296ff.
Ghost fields      20 34 85—86 171 180
Global hyperbolicity      29 37 44 293
Gravitational      154ff.
Gravitational, scalar field U      29 43 85 88 99 128 292—293 304—305 307 312
Gravitational, spinor field      17 31 85 88 318
Gravitational, vierbein form      84
Gravitons      2—6 81 154 215 236 245 261 289—290
Gravity      1 2 7 150—154
Gravity, quantum      see under “Quantum gravity”
Green functions      10 20—28 73—78 94—96
Green functions, for interacting fields      296 302—331 306 318—329
Green functions, thermal      10 25—28 54 94—95 101 141 276 288 318
Hadamard function      20—23 218
Hamiltonian      14—16 18 25 299
Hamiltonian, diagonalization of      73
Hawking area theorem      274
Hawking effect      6 8 117 318—329 see also “The entries under black hole”
Heisenberg picture      13 300 315
Heisenberg uncertainty relations      63
Hilberl space      13
Horizon      40—43 90 111—122 137—138 187 249 252—257 261ff.
In and out regions      57 73 104ff. 147 172 190 227 237—238 241 250 257 269—270 315
information      274—275 279
instantons      291
Interacting fields      5 6 9 10 27 29 153 163 210 261 275 292—322
Interaction picture      296 299 301 303 307
Kerr black hole      261
Kerr — Newman black hole      274 288
Killing vectors      42 45 47 113—124 123 129 137 139 265 281 288
Killing vectors, conformal      43 79 124 138—140 188
Kruskal coordinates      41—43 268 276 284 319
Kruskal manifold      42—43 275 280—281
Lagrangian, effective      158 190 208
Lagrangian, electromagnetic field      19 32 85—88
Lagrangian, for particle detector      50
Landau gauge      19 32 34
Lorenlz group representations      82—85 179—180 202
Lorentz transformations      81—84 94 130
LSZ formalism      295 302
Mass (field quanta)      10
Maxwell equations      19
Milne universe      118 124—129 130 132 144 230
Minkowski space, conformal diagram of      38—40
Minkowski space, quantum field theory in      7 10—35 45 49 63 81 89ff. 152—153
Mirror (moving)      89 102—109 257
Momentum      14 15 18
Neutrinos      81 99 261 273
Newton gravitational constant      154 161 308
Normal ordering      4 16 91 152 216
Normalization (of stales)      12 18 44 114 119 121 144 259 307
Number operator      14 15 25 46 49 108—109 315
One-loop approximation      3ff. 154 215 246 289
Pair creation      261 263—264 270 273 280
Particle creation      7 36 50 62H. 241 292 314
Particle creation, by black holes      see also “The entries under black hole”
Particle creation, by moving boundaries      89 102—109
Particle creation, in cosmology      17 37 59—62 73 81 118 129 244 248 316—327
Particle detector      8 36 48—59 63ff. 90 104—105 123ff. 142 150 257 281—282
Particle number      see under “Number operator”
Particle, adiabatic definition      65ff. 126fl".
Particle, concept in curved space      36 48—59 63ff. 73 110 136 150
Partition function      25 289—290
path integral      10 20 28—35 155 171 288—289 296 298 301
Pauli — Villars regularization      see under “Regularization”
Perturbation theory      142—149 237—243 302ff.
Photon      1 3 20 81 245 273
Planck length      2 3 246
Planck lime      2 244—248
Planck mass      272
Planck spectrum      116 128 260
Poincare Invariance      45 49 51 130 132 296 309 315—328
Point-splitting regularization      see under “Regularization”
Pressure      92 246
Quantum electrodynamics      1 2 9 47 153 161 292 307
Quantum gravity      1—8 215 224 272 275 287
Regularization      8 36 73 89 150
Regularization, adiabatic      151 206ff.
Regularization, cut-off      92 94 152—153 194 209
Regularization, dimensional      151 162ff. 177—182 190 202£f. 304 309 320
Regularization, Pauli — Villars      210ff.
Regularization, point-splitting      151 167—171 194ff. 217ff. 313
Regularization, zeta-function      165—169 176—177 180 192
Reissner — Nordstrom black hole      254 262—263 265 276 286
Renormalization      4—10 16 29 37 89 96 127—128 150—224 292 301 304—314
Renormalization group      164 309 311 314
Response function (for particle detector)      52 56 133 282
Ricmannian manifold      288—289
Rindler coordinates      111 113
Rindler space      109—117 124—130 138—141 186—187 233 277
Robertson — Walker cosmology      58ff. 118—149
Robinson — Bertotti spacetime      291
S matrix      47 292—301
Scalar field      10—12 20ff. 43—48 50—54 83 94 99 102 113
Scalar field, in curved space      44 79 85
Scalar field, Lagrangian      see under “Lagrangian”
Scalar field, wave equation      10 44
Scalar product      11 12 44 58 108
Schwarzscluld spacetime      40—42 250 268—272 276—277 284 287—290
Schwinger variational principle      155
Self-interacting field      128 301—314
Singularity, avoidance of      245—246
Singularity, coordinate      42 137
Singularity, naked      263 272 291
Singularity, physical      8 42—43 139 146 152 244—245 252—253 256 271—273 276 287—288 291
Singularity, theorems      246
Spin      10 17 18 81—88
Spin 1 field      83—88
Spin, higher      86—87 129 179—180
Spinor field      17 23 28 31 80 83—88 93 182 258 318
Spinors      18 23
Sponcaneous symmetry breaking      128 321
Static spacetime      122—124 232
Steady-state cosmology      130—142 187
Stimulated emission (from black hole)      270
Stress-tensor (stress-energy-momentum tensor)      7 10 14 18 37 49 87il. 127 138 150—224 225—248 264—275 283—287 308
Super-radiance      262 270 274
Supergravity      1 9
Surface effects (in quantum field theory)      222—224
Surface gravity      252 255 262 267 274 276
Tensor, metric      10
Tensor, stress      see under “Stress-tensor”
Thermal Green functions      see under “Green functions”
Thermal radiation, accelerated detector      90 109—110 116—127
Thermal radiation, from black hole      249 257 275—285 292 318—329
Thermal radiation, in de Sitter space      133 136 138
Thermal radiation, moving mirror      106—109 229
Thermal spectrum      133 144 260 see
Thermodynamics, and black holes      6 274—275
Thermodynamics, first law      274
Thermodynamics, second law      288 244 274—275 292 318
Thermodynamics, third lav      263
Thermodynamics, zeroth law      274
Thirring model      318—329
Tomonaga — Schwinger equation      299
Topology (nontrivial)      9 89ff. 110 140—141 152 159 207 276 291—292 298 319—321
Trace (of stress-tensor)      99
Trace anomalies      see under “Conformal anomalies”
Twisted Fields      91—96 194 200 319—321
Ultraviolet divergences      see under “Divergences”
Uncertainty relations      see under “Heisenberg”
Uouville transformation      135 145
Vacuum slate      13
Vacuum slate, adiabatic definition      62—73 124ff.
Vacuum slate, conformal      37 79—81 124ff. 138—142 143 184—187 200 227
Vacuum slate, in and out states      29
Vacuum slate, in curved space      45 48 55 76 87
Vacuum slate, in de Sitter space      131?.
Vacuum slate, in Einstein universe      123 141—142
Vacuum slate, in Milne universe      126
Vacuum slate, in Minkowski space i      3ff.
Vacuum slate, in presence of boundary      97 104—105
Vacuum slate, Rindler      114—126 130 141 186 235
Vierbeins      83—84 94
While holes      18 42—43 291
Wightman functions      21 52 57 104—105 123 132—133 136 281
Zeca-function regularization      see under “Regularization”
Zela-funciion (generalized)      165 190
Zeta-function (Riemann's)      165 193 320
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå