Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Gould H., Tobochnik J., Christian W. — An introduction to computer simulation methods
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: An introduction to computer simulation methods
Àâòîðû: Gould H., Tobochnik J., Christian W.
Àííîòàöèÿ: Now in its third edition, this book teaches physical concepts using computer simulations. The text incorporates object-oriented programming techniques and encourages readers to develop good programming habits in the context of doing physics. Designed for readers at all levels. An Introduction to Computer Simulation Methods uses Java, currently the most popular programming language. Introduction, Tools for Doing Simulations, Simulating Particle Motion, Oscillatory Systems, Few-Body Problems: The Motion of the Planets, The Chaotic Motion of Dynamical Systems, Random Processes, The Dynamics of Many Particle Systems, Normal Modes and Waves, Electrodynamics, Numerical and Monte Carlo Methods, Percolation, Fractals and Kinetic Growth Models, Complex Systems, Monte Carlo Simulations of Thermal Systems, Quantum Systems, Visualization and Rigid Body Dynamics, Seeing in Special and General Relativity, Epilogue: The Unity of Physics For all readers interested in developing programming habits in the context of doing physics.
ßçûê:
Ðóáðèêà: Ôèçèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Èçäàíèå: 3-d edition
Ãîä èçäàíèÿ: 2006
Êîëè÷åñòâî ñòðàíèö: 813
Äîáàâëåíà â êàòàëîã: 17.11.2013
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Acceptance probability 607 630
Accuracy 28 29 46 75 102—103
action see "Principle of least action"
Air resistance 60
Algorithm 3 see
Alloy 625
Anderson localization see "Localization"
Animation 35—41
annealing 644
Ant in the labyrinth 509—511
Antiferromagnetism 623—626
Area-preserving map 176
Argon 8 256—257
Array 17
Aspect ratio 115
Attractor see "Chaos"
Autocorrelation function 239 see
Ballistic deposition 519
BASIC 4
Beats 89 343
Bifurcation, Hopf 248
Binary alloys 662
bit manipulation 237 569 650
Black holes 770—772
Black holes, Kerr metric 776—778
Boltzmann distribution see "Probability distribution"
Burger's equation 582
C/C++ 4
canonical ensemble 276 597 609
Canonical ensemble, fluctuations 666
Cellular automata 530—543 568
Central limit theorem 213—215
Chaos Chapter 6
Chaos, attractor 144
Chaos, attractor, stable attractor 144
Chaos, basin of attraction 144 173
Chaos, bifurcation 144
Chaos, bifurcation diagram 145
Chaos, bifurcation, Hopf bifurcation 248
Chaos, bifurcation, period doubling 160
Chaos, bifurcation, pitchfork 146 154
Chaos, bifurcation, tangent 152
Chaos, billiard models 184—186
Chaos, butterfly effect 168
Chaos, chaotic scattering 186—188
Chaos, circle map 186
Chaos, controlling chaos 162—166
Chaos, double pendulum 178—180
Chaos, Feigenbaum constant 153
Chaos, Feigenbaum constant, estimating 153—154 181—182
Chaos, fixed point, qualitative properties 151—152
Chaos, fixed point, root finding algorithms 163
Chaos, fixed point, stability 189
Chaos, fixed point, stable fixed point 143 144
Chaos, fixed point, unstable fixed point 144
Chaos, forced damped pendulum 169—173
Chaos, fractals 520—522
Chaos, Hamiltonian chaos 173—181
Chaos, Henon map 166—167
Chaos, intermittency 152
Chaos, KAM tori 175
Chaos, logistic map 142—166
Chaos, Lorenz's atmospheric model 167—169 521
Chaos, Lorenz's atmospheric model, linearized equations 183
Chaos, Lyapunov exponent 157—161 167
Chaos, Lyapunov exponent, definition 157
Chaos, Lyapunov exponent, logistic map 159
Chaos, Lyapunov exponent, Lyapunov spectrum 182—184
Chaos, period doubling 157
Chaos, period doubling, bifurcation 160
Chaos, period doubling, chemical reactions 188—189
Chaos, period doubling, route to chaos 188
Chaos, pitchfork bifurcation 146 154
Chaos, Poincare map 169
Chaos, Poincare map, double pendulum 179
Chaos, scale invariance 492
Chaos, self-similarity 153—157 492 499
Chaos, sensitivity to initial conditions 157 271
Chaos, stadium billiard model 184—186
Chaos, standard map 175—177
Chaos, strange attractors 520
Chaos, superstable trajectory 154 181—182
Chaos, tangent bifurcation 152
Chaos, universality 156
Chaos, weak chaos 160—161
Chemical reactions, diffusion controlled 233—236
Chemical reactions, oscillations 104—105
Chemical reactions, pattern formation 247—249
Chi-square test 238
Cluster see "Percolation Ising
Cluster, definition 452
Cluster, rare gas 660—661
Combinatorial optimization 643
complex numbers 41—44
Complex systems Chapter 14
Conservative system 97 174
Constrained dynamics 784—788
Control 41
Control, CalculationControl see "Open Source Physics"
Control, SimulationControl see "Open Source Physics"
Core repulsion 256
correlation length 619 621 646
Correlation time 231—232 617
Coupled oscillators 313—319
Critical exponents 471—475 see
Critical slowing down 247 623 646
Curl 386 398—402
Damping 93—94
Damping, critical 94
Debye potential 133
Demon algorithm 592—598 663—665
Detailed balance condition 436 605
Differential cross section see "Scattering"
Differential equations, adaptive step size algorithm 81 138
Differential equations, Beeman algorithm 78
Differential equations, Euler algorithm 13 14
Differential equations, Euler algorithm, stability 103
Differential equations, Euler — Cromer algorithm 29 45—46 75 88
Differential equations, Euler — Richardson algorithm 46—47 76 79
Differential equations, half-step algorithm 76 690 698 716
Differential equations, leapfrog algorithm see "Verlet algorithm"
Differential equations, midpoint algorithm 75
Differential equations, Modified Euler algorithm 45—47
Differential equations, predictor-corrector algorithm 82
Differential equations, Runge — Kutta algorithm 55 78—80
Differential equations, symplectic algorithms 82—84
Differential equations, Verlet algorithm 77—78 83 84 258 264 272
Diffraction 345
Diffraction grating 351
Diffraction, Fraunhofer 352—354
Diffraction, Fresnel 355—358
Diffraction, single slit 351
Diffusion limited aggregation (DLA) see "Fractals"
Diffusion, equation 216—217 249—251 664 673 701
Diffusion, equation, relation to fragmentation 245
Diffusion, equation, relation to random walks 249—251
Diffusion, equation, relation to Schroedinger's equation 707
Diffusion, mean square displacement 293
Diffusion, quantum Monte Carlo 707—711
Diffusion, relation to Laplace's equation 383
Diffusion, relation to Schroedinger's equation 673 701
Diffusion, self-diffusion coefficient 209 216
dispersion relation 315
Dissipative system 174
Divergence 398 400
Divergence, coordinate free definition 400
Drag force 60 61 63 65—66 70
Dynamical system see "Chaos"
electric field 366—370
Electric field lines 370—376
Electric potential 376—378
Electrical circuits, analogy to mechanical systems 99
Electrical circuits, filter 100 101
Electrical circuits, Kirchhoff's loop rule 98
Electrical circuits, Kirchhoff's loop rule, voltage drops 98
Electrical circuits, oscillations 98—102
Electrical circuits, RC 98—101
Electrical circuits, resonance curve 101
Electrical circuits, resonant frequency 101
Electrical circuits, RLC 102
Electrostatic shielding 378
Encapsulation 5 26 43 47
Energy conservation 78 87—88 98
entropy 161 299 see
Entropy, generalized 162
Entropy, logistic map 161—162
Entropy, strong and weak chaotic systems 162
Equilibrium, approach 199 201—202 270 578—579 590
Equilibrium, fluctuations 200—201 272
Equilibrium, nature 272
Equipartition theorem 597
Equipotential lines 377
Ergodicity 301
Error analysis, Monte Carlo 426—429
Euler angles 739 760—762
Euler's equation 736
Exact enumeration 202 510
Fermat's principle 240—243
Fermi, Pasta, Ulam (FPU) problem 339—340
Field-driven transition 636
Filter 100
Finite difference 13
Finite size scaling 471—475
First-order phase transition 624 636 638
Fitting 222 449 see
Fitting, exponential 112
Fitting, power law 112
Floating point 102
Fluid flow, lattice gas model 568—579
FORTRAN 4
Fourier synthesis 324—325
Fourier transform 313 322—340 695—698
Fourier transform, fast Fourier transform 359—362 689 696—698
Fourier transform, Fourier analysis 328—331
Fourier transform, Fourier coefficients 322
Fourier transform, Fourier integrals 335
Fourier transform, Fourier series 322—325
Fourier transform, Gibbs phenomenon 325
Fourier transform, Nyquist frequency 325
Fourier transform, Parseval's theorem 336
Fourier transform, power spectrum 336—340
Fourier transform, sampling theorem 325
Fourier transform, spatial 333
Fourier transform, two-dimensional 333
Fractal dimension 491—499
Fractal dimension, box dimension 501 520
Fractal dimension, correlation dimension 520 521
Fractal dimension, correlation function 520
Fractal dimension, generalized dimension 522
Fractal dimension, information dimension 523
Fractal dimension, mass dimension 491 522 523
Fractal dimension, percolation clusters 493
Fractals Chapter 13
Fractals, cluster-cluster aggregation (CCA) 525—526
Fractals, diffusion limited aggregation (DLA) 511—515
Fractals, Eden model 503—504 518—519
Fractals, epidemic model 502—503
Fractals, invasion percolation 504—509
Fractals, Koch curve 499—502
Fractals, Laplacian growth model 515—517
Fractals, monofractals 523
Fractals, multifractals 523
Fractals, self-affine 518
Fractals, Sierpinski carpet 502
Fractals, Sierpinski gasket 502
Fractals, strange attractors see "Chaos"
Free fall 14—19
frequency 87
Frustration 627
Galaxy model 781—783
Game of life 540—543
General relativity 118 767—778
Genetic algorithm 561—568
Genotype 562—563
Geometrical growth 142
Geometrical optics 240
Gram — Schmidt orthogonalization 183
Granular matter 305—307
Green's function 389 707 709
Hamiltonian 82 83 173—181 637 654 656
Hard disks, molecular dynamics 282—297
Hard disks, Monte Carlo 628—631 661—662
Hard rods 628—630
Hard spheres 628
heat capacity 608 609 666
Heat flow 663—665
Heisenberg model 300—301 656—657
Helmholtz free energy 597 624 633 636 651
Histogram method 633—635
Hodgkin — Huxley equations 105—107
Holonomic constraints 784
Hopfield model 551—555
Hysteresis 624
Impedance 102
Importance sampling see "Monte Carlo"
inheritance 5 26—30
Inheritance, extends 27
Inheritance, subclass 27
Inheritance, superclass 27
inner class 124
Instance variable 23
Integer variable 16
Integrable 174
Integration see "Numerical integration"
Interference 345—352
Interpolation 444—450
Ising model 554 598 609—627
Ising model, cluster algorithms (Swendsen — Wang, Wolff) 647 649 650
Ising model, demon algorithm see "Demon algorithm"
Ising model, Glauber dynamics 659
Ising model, single spin flip dynamics (Metropolis algorithm) 605—606 609—618
Java language 4
Java language for loop 17
Java language, abstract 26
Java language, arrays 17 37 39 52
Java language, assignment operator 17
Java language, byte code 14
Java language, case-sensitivity 15 16 21
Java language, cast 17
Java language, classpath 15
Java language, clone interface 756
Java language, constructor 21 23
Java language, dot operator 22
Java language, event listeners 119
Java language, if 37
Java language, import 30
Java language, inheritance 26—29
Java language, instance variable 23
Java language, instantiation 22
Java language, interface 47—48
Java language, keywords 21
Java language, local variable 23
Java language, main method 14
Java language, Math class 25
Java language, methods 14
Java language, mouse actions 119
Java language, new operator 22
Java language, objects 19—25
Java language, operators 20
Java language, package 15
Ðåêëàìà