Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Gould H., Tobochnik J., Christian W. — An introduction to computer simulation methods
Gould H., Tobochnik J., Christian W. — An introduction to computer simulation methods



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: An introduction to computer simulation methods

Àâòîðû: Gould H., Tobochnik J., Christian W.

Àííîòàöèÿ:

Now in its third edition, this book teaches physical concepts using computer simulations. The text incorporates object-oriented programming techniques and encourages readers to develop good programming habits in the context of doing physics. Designed for readers at all levels. An Introduction to Computer Simulation Methods uses Java, currently the most popular programming language. Introduction, Tools for Doing Simulations, Simulating Particle Motion, Oscillatory Systems, Few-Body Problems: The Motion of the Planets, The Chaotic Motion of Dynamical Systems, Random Processes, The Dynamics of Many Particle Systems, Normal Modes and Waves, Electrodynamics, Numerical and Monte Carlo Methods, Percolation, Fractals and Kinetic Growth Models, Complex Systems, Monte Carlo Simulations of Thermal Systems, Quantum Systems, Visualization and Rigid Body Dynamics, Seeing in Special and General Relativity, Epilogue: The Unity of Physics For all readers interested in developing programming habits in the context of doing physics.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: 3-d edition

Ãîä èçäàíèÿ: 2006

Êîëè÷åñòâî ñòðàíèö: 813

Äîáàâëåíà â êàòàëîã: 17.11.2013

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Java language, pass by value      54
Java language, primitive data types      16
Java language, protection, package      19
Java language, protection, private      19
Java language, protection, public      15
Java language, statement      14 15
Java language, static methods      25
Java language, String      18
Java language, Switch      120
Java language, thread      35
Java language, variable scope      18
Java language, variables      14
Java language, Virtual Machine      5
Java language, while loop      18
Kepler's laws      108 113—114 117—118
Kirchhoff's loop rule      98
Kirkwood gaps      137—138
Kosterlitz — Thouless transition      654—656
Lagrangian      244 711 712 773 785
Laplace's equation      379 see
Lattice gas      625—626 see
Least squares      221—225
Lee — Kosterlitz method      636—637
Lennard-Jones potential      256—257 261 270 293 631—633
Lienard — Wiechert      391 395
Linear regression      222 see
Linear response function      276 609
Lissajous figures      89
Local variable      23
localization      338—339
Logistic map      142 see
Lotka — Volterra equations      780
Magnetic field      386 398—407
magnetization      599
Magnus effect      70—71
Master equation      250
Maxwell — Boltzmann distribution      see "Probability distribution"
Maxwell's equations      398—407
Mean free path      292—293
Melting      278—279
Memory recall      554
Metastable state      278
Metropolis algorithm      see "Monte Carlo"
microcanonical ensemble      274 590—591 597 603
Microwave cavity      406—407
Mimas      see "Saturn"
Minority game      581—582
Molecular Dynamics      Chapter 8
Momentum conservation      272
Monte Carlo      202 see
Monte Carlo, canonical ensemble      Chapter 15 see
Monte Carlo, constant pressure ensemble      638—639
Monte Carlo, error analysis      see "Error analysis"
Monte Carlo, grand canonical ensemble      625 639—640
Monte Carlo, importance sampling      429 433—435 604 699 711
Monte Carlo, Metropolis algorithm      435—438 603—614 650
Monte Carlo, microcanonical ensemble      see "Microcanonical ensemble"
Monte Carlo, time      593 608
Monte Carlo, trial      204
Monte Carlo, variational      240—245
Morse potential      344 714
Multivariate optimization      643
n-fold way      652—654
networks      555—561
Networks, Erdoes — Renyi model      555—556
Networks, preferential attachment model      557—560
Networks, Watts — Strogatz model      557 560—561
Neural membrane      105—107
Neural networks      551—555
Neutron transport      438—441
Newton's law of cooling      68—69
Newton's law of gravitation      59 108—110
Newton's method      see "Root finding"
Newton's Second Law of Motion      3 12 47 174
Newton's Third Law      263
Normal modes      Chapter 9 313—319
NP-complete      555 643
Nuclear decay      66—68 217—219
Numerical derivative, acceleration      62
Numerical derivative, backward difference      62
Numerical derivative, central difference      62
Numerical derivative, definition      48
Numerical integration      412—420
Numerical integration, error estimates      441—442
Numerical integration, midpoint approximation      416
Numerical integration, Monte Carlo methods, hit or miss method      422
Numerical integration, Monte Carlo methods, sample mean method      422
Numerical integration, multidimensional integrals      424
Numerical integration, rectangular approximation      412 416
Numerical integration, Simpson's rule      414 418 420 424 441
Numerical integration, trapezoidal approximation      417 441
Object-Oriented Programming      4
Open Source Physics      29—41
Open Source Physics, AbstractCalculation      35
Open Source Physics, AbstractSimulation      35
Open Source Physics, CalculationControl      31 32 35
Open Source Physics, Drawable      48—51
Open Source Physics, Function      47
Open Source Physics, ODE      54—55
Open Source Physics, ODESolver      55—57
Open Source Physics, SimulationControl      35
Open Source Physics, three-dimensional drawing      732—735
Open Source Physics, world coordinates      39
Opinion formation models      580
Order parameter      472 620
Order-disorder transition      623 625
Partial differential equations, boundary value problem      379
Partial differential equations, Laplace's equation      378—390 407—408
Partial differential equations, Maxwell's equations      398—407
Partial differential equations, wave equation      340—345
Partition function      597 605 668
Pendulum, double      178—180
Pendulum, forced damped      169—173
Pendulum, simple      89—93 169
Percolation      Chapter 12
Percolation, clusters, cluster labeling      463—471
Percolation, clusters, Ising model      646—649
Percolation, clusters, mean cluster size      462
Percolation, clusters, mean cluster size distribution      462
Percolation, connectedness length      454 463 472 480 646
Percolation, continuum      460—461 485
Percolation, critical exponents      471—488
Percolation, finite size scaling      473—474
Percolation, random resistor network      486—488
Percolation, scaling law      474
Percolation, site      452
Percolation, swiss cheese model      461 485
Percolation, universality class      474
Periodic boundary conditions      215 258—261 272 277 281 320
Phase separation      625
Phase space      88 169 174
Phase transition      454 473 474 598 624 636 see
Phase transition, continuous      472
Phase transition, firt-order      623
Phase transition, geometrical      471
Phase transition, Ising      618—623
Phase transition, percolation      452
Phase transition, thermodynamic      471
Phenotype      562 563
Planar model      654—656
Poincare      133 169
Poisson's equation      384—387
Polymers      225—233
Polymorphism      6
Porous media      461
Porous Media, Fluid Flow      579
Potts model      637—638 658 659
Precession      118 748
Precession, uniform      755—756
Pressure      273—274
Pressure, mean      289
Principle of least action      244 711
probability density      212 250—251 274 430—433 690
Probability distribution, Boltzmann      596—598 604—607
Probability distribution, cumulative      430
Probability distribution, Gaussian      214 431 544
Probability distribution, Maxwell — Boltzmann      275
Probability distribution, nonuniform      429—433
Probability distribution, nonuniform, acceptance-rejection method      444
Probability distribution, nonuniform, inverse transform method      430—431
Probability distribution, Poisson      217—219
Programming, languages      4—5
Programming, object oriented      5—6
Programs, Affine2DApp      724—725
Programs, Affine3DMatrix      757—759
Programs, AnalyzeApp      327—328
Programs, Ball3DApp      69—70
Programs, Barbell3D      735
Programs, BifurcateApp      144—146
Programs, BoltzmannApp      606—607
Programs, BouncingBallApp      38—39
Programs, Box3DApp      732—733
Programs, BoxApp      199—200
Programs, BoxSuperpositionApp      686—687
Programs, CalculationApp      30
Programs, Complex2DFrameApp      718
Programs, ComplexApp      41—42
Programs, ComplexPlotFrameApp      716—717
Programs, DrawingApp      49—50
Programs, EigenstateApp      683
Programs, ElectricFieldApp      367—369
Programs, FallingBallApp      22
Programs, FallingParticleApp      27—28
Programs, FallingParticleCalcApp      32—33
Programs, FallingParticleODEApp      56
Programs, FallingParticlePlotApp      33—34
Programs, FermatApp      242
Programs, FeynmanPlateModel      744—745
Programs, FFT2DCalculationApp      334—335
Programs, FFTApp      330
Programs, FFTCalculationApp      332
Programs, FieldLineApp      373—374
Programs, FirstFallingBallApp      14—15
Programs, FrauhoferApp      352—354
Programs, FreeRotationSpaceView      752—753
Programs, FreewayApp      539
Programs, FresnelApp      355—357
Programs, GeneticApp      563—564
Programs, GraphicalSolutionApp      149—151
Programs, HopfieldApp      552—554
Programs, HuygensApp      347—349
Programs, IdealDemonApp      594—595
Programs, IntegralCalcApp      418—419
Programs, Interaction3DApp      733—734
Programs, IsingAutoCorrelatorApp      615—617
Programs, IterateMapApp      142—144
Programs, KochApp      499—501
Programs, LagrangelnterpolatorApp      447—448
Programs, LaplaceApp      380—382
Programs, LifeApp      541—542
Programs, LJParticlesApp      268—269
Programs, MaxwellApp      404—405
Programs, Methane      730
Programs, MethaneApp      731—732
Programs, MonteCarloEstimatorApp      423—424
Programs, MouseApp      120
Programs, NumericallntegrationApp      415—416
Programs, OneDimensionalAutomatonApp      531—532
Programs, PendulumApp      92
Programs, PercolationApp      455—457
Programs, PlanetApp      115—116
Programs, PlotFrameApp      29—30
Programs, PoincareApp      170—172
Programs, PolynomialApp      445—446
Programs, ProjectileApp      58—59
Programs, QMWalkApp      705—706
Programs, QuatemionApp      741—742
Programs, RadiatingEFieldApp      395—396
Programs, RasterFrameApp      362—363
Programs, RecursiveFixedPointApp      163—165
Programs, RGApp      476—478
Programs, RigidBodyModel      749—751
Programs, Rotation3D      728—729
Programs, Scalar2DFrameApp      363
Programs, ScatterApp      128—129
Programs, SchroedingerApp      677—678
Programs, SecondLawPlotApp      114
Programs, SimulationPlotApp      35—36
Programs, SpinningTopModel      753—754
Programs, SpinningTopSpaceView      754—755
Programs, SynthesizeApp      323—324
Programs, TDHalfStepApp      693—694
Programs, ThreeBodyApp      136
Programs, TorqueApp      737—739
Programs, VectorPlotApp      409
Programs, WalkerApp      205—206
Propagator      707
Python      4
Quality factor (Q)      101
Quantum systems      Chapter 16
Quantum systems, bound states      679—684
Quantum systems, diffusion quantum Monte Carlo      707—711
Quantum systems, Green's function      707 709
Quantum systems, momentum space      695—698
Quantum systems, path integral quantum Monte Carlo      711—714
Quantum systems, random walk quantum Monte Carlo      701—707
Quantum systems, split-operator algorithm      698
Quantum systems, time-dependent solutions      689—695
Quantum systems, variational methods      698—701
Quasi-ergodic hypothesis      274 301 339 593
Quasiequilibrium      644
Quasiperiodic      181 186
Quaternions      740—753 759—762
Radial distribution function      280—282 292 627
Radiation from accelerated charges      390—398
Random deposition      519
Random number generator      197—198 236—240 649—650
Random process      191 Chapter
Random walk      203—217
Random walk, continuum      212
Random walk, mean first passage time      210
Random walk, modified      210—217
Random walk, multistate      211
Random walk, persistent      211
Random walk, polymer application      225—233
Random walk, quantum Monte Carlo      701—707
Random walk, relation to diffusion      216 249—251
Random walk, self-avoiding      226—227
Random walk, self-avoiding pivot algorithm      246—247
Random walk, solution to Laplace's equation      387—390
Random walk, true self-avoiding      232—233
Real-time control      3
Recursion      149—151 499—502
Recursion relation      479
Reduced mass      109
Refraction      243
Relaxation methods      380—387
Relaxation methods, Gauss — Seidel      383—384
Relaxation methods, Jacobi      382—383
Relaxation methods, multigrid      407—408
Relaxation time      93
Renormalization group      475—484
Reptation method      228—231
Resonance      101 137
Retarded time      390
Rigid body dynamics      735—756
Root finding, bisection method      163 182 191—192 392
Root finding, Newton's method      190—192
Roundoff error      102
Sample variance      426
1 2 3
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå