Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Gould H., Tobochnik J., Christian W. — An introduction to computer simulation methods
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: An introduction to computer simulation methods
Àâòîðû: Gould H., Tobochnik J., Christian W.
Àííîòàöèÿ: Now in its third edition, this book teaches physical concepts using computer simulations. The text incorporates object-oriented programming techniques and encourages readers to develop good programming habits in the context of doing physics. Designed for readers at all levels. An Introduction to Computer Simulation Methods uses Java, currently the most popular programming language. Introduction, Tools for Doing Simulations, Simulating Particle Motion, Oscillatory Systems, Few-Body Problems: The Motion of the Planets, The Chaotic Motion of Dynamical Systems, Random Processes, The Dynamics of Many Particle Systems, Normal Modes and Waves, Electrodynamics, Numerical and Monte Carlo Methods, Percolation, Fractals and Kinetic Growth Models, Complex Systems, Monte Carlo Simulations of Thermal Systems, Quantum Systems, Visualization and Rigid Body Dynamics, Seeing in Special and General Relativity, Epilogue: The Unity of Physics For all readers interested in developing programming habits in the context of doing physics.
ßçûê:
Ðóáðèêà: Ôèçèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Èçäàíèå: 3-d edition
Ãîä èçäàíèÿ: 2006
Êîëè÷åñòâî ñòðàíèö: 813
Äîáàâëåíà â êàòàëîã: 17.11.2013
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Java language, pass by value 54
Java language, primitive data types 16
Java language, protection, package 19
Java language, protection, private 19
Java language, protection, public 15
Java language, statement 14 15
Java language, static methods 25
Java language, String 18
Java language, Switch 120
Java language, thread 35
Java language, variable scope 18
Java language, variables 14
Java language, Virtual Machine 5
Java language, while loop 18
Kepler's laws 108 113—114 117—118
Kirchhoff's loop rule 98
Kirkwood gaps 137—138
Kosterlitz — Thouless transition 654—656
Lagrangian 244 711 712 773 785
Laplace's equation 379 see
Lattice gas 625—626 see
Least squares 221—225
Lee — Kosterlitz method 636—637
Lennard-Jones potential 256—257 261 270 293 631—633
Lienard — Wiechert 391 395
Linear regression 222 see
Linear response function 276 609
Lissajous figures 89
Local variable 23
localization 338—339
Logistic map 142 see
Lotka — Volterra equations 780
Magnetic field 386 398—407
magnetization 599
Magnus effect 70—71
Master equation 250
Maxwell — Boltzmann distribution see "Probability distribution"
Maxwell's equations 398—407
Mean free path 292—293
Melting 278—279
Memory recall 554
Metastable state 278
Metropolis algorithm see "Monte Carlo"
microcanonical ensemble 274 590—591 597 603
Microwave cavity 406—407
Mimas see "Saturn"
Minority game 581—582
Molecular Dynamics Chapter 8
Momentum conservation 272
Monte Carlo 202 see
Monte Carlo, canonical ensemble Chapter 15 see
Monte Carlo, constant pressure ensemble 638—639
Monte Carlo, error analysis see "Error analysis"
Monte Carlo, grand canonical ensemble 625 639—640
Monte Carlo, importance sampling 429 433—435 604 699 711
Monte Carlo, Metropolis algorithm 435—438 603—614 650
Monte Carlo, microcanonical ensemble see "Microcanonical ensemble"
Monte Carlo, time 593 608
Monte Carlo, trial 204
Monte Carlo, variational 240—245
Morse potential 344 714
Multivariate optimization 643
n-fold way 652—654
networks 555—561
Networks, Erdoes — Renyi model 555—556
Networks, preferential attachment model 557—560
Networks, Watts — Strogatz model 557 560—561
Neural membrane 105—107
Neural networks 551—555
Neutron transport 438—441
Newton's law of cooling 68—69
Newton's law of gravitation 59 108—110
Newton's method see "Root finding"
Newton's Second Law of Motion 3 12 47 174
Newton's Third Law 263
Normal modes Chapter 9 313—319
NP-complete 555 643
Nuclear decay 66—68 217—219
Numerical derivative, acceleration 62
Numerical derivative, backward difference 62
Numerical derivative, central difference 62
Numerical derivative, definition 48
Numerical integration 412—420
Numerical integration, error estimates 441—442
Numerical integration, midpoint approximation 416
Numerical integration, Monte Carlo methods, hit or miss method 422
Numerical integration, Monte Carlo methods, sample mean method 422
Numerical integration, multidimensional integrals 424
Numerical integration, rectangular approximation 412 416
Numerical integration, Simpson's rule 414 418 420 424 441
Numerical integration, trapezoidal approximation 417 441
Object-Oriented Programming 4
Open Source Physics 29—41
Open Source Physics, AbstractCalculation 35
Open Source Physics, AbstractSimulation 35
Open Source Physics, CalculationControl 31 32 35
Open Source Physics, Drawable 48—51
Open Source Physics, Function 47
Open Source Physics, ODE 54—55
Open Source Physics, ODESolver 55—57
Open Source Physics, SimulationControl 35
Open Source Physics, three-dimensional drawing 732—735
Open Source Physics, world coordinates 39
Opinion formation models 580
Order parameter 472 620
Order-disorder transition 623 625
Partial differential equations, boundary value problem 379
Partial differential equations, Laplace's equation 378—390 407—408
Partial differential equations, Maxwell's equations 398—407
Partial differential equations, wave equation 340—345
Partition function 597 605 668
Pendulum, double 178—180
Pendulum, forced damped 169—173
Pendulum, simple 89—93 169
Percolation Chapter 12
Percolation, clusters, cluster labeling 463—471
Percolation, clusters, Ising model 646—649
Percolation, clusters, mean cluster size 462
Percolation, clusters, mean cluster size distribution 462
Percolation, connectedness length 454 463 472 480 646
Percolation, continuum 460—461 485
Percolation, critical exponents 471—488
Percolation, finite size scaling 473—474
Percolation, random resistor network 486—488
Percolation, scaling law 474
Percolation, site 452
Percolation, swiss cheese model 461 485
Percolation, universality class 474
Periodic boundary conditions 215 258—261 272 277 281 320
Phase separation 625
Phase space 88 169 174
Phase transition 454 473 474 598 624 636 see
Phase transition, continuous 472
Phase transition, firt-order 623
Phase transition, geometrical 471
Phase transition, Ising 618—623
Phase transition, percolation 452
Phase transition, thermodynamic 471
Phenotype 562 563
Planar model 654—656
Poincare 133 169
Poisson's equation 384—387
Polymers 225—233
Polymorphism 6
Porous media 461
Porous Media, Fluid Flow 579
Potts model 637—638 658 659
Precession 118 748
Precession, uniform 755—756
Pressure 273—274
Pressure, mean 289
Principle of least action 244 711
probability density 212 250—251 274 430—433 690
Probability distribution, Boltzmann 596—598 604—607
Probability distribution, cumulative 430
Probability distribution, Gaussian 214 431 544
Probability distribution, Maxwell — Boltzmann 275
Probability distribution, nonuniform 429—433
Probability distribution, nonuniform, acceptance-rejection method 444
Probability distribution, nonuniform, inverse transform method 430—431
Probability distribution, Poisson 217—219
Programming, languages 4—5
Programming, object oriented 5—6
Programs, Affine2DApp 724—725
Programs, Affine3DMatrix 757—759
Programs, AnalyzeApp 327—328
Programs, Ball3DApp 69—70
Programs, Barbell3D 735
Programs, BifurcateApp 144—146
Programs, BoltzmannApp 606—607
Programs, BouncingBallApp 38—39
Programs, Box3DApp 732—733
Programs, BoxApp 199—200
Programs, BoxSuperpositionApp 686—687
Programs, CalculationApp 30
Programs, Complex2DFrameApp 718
Programs, ComplexApp 41—42
Programs, ComplexPlotFrameApp 716—717
Programs, DrawingApp 49—50
Programs, EigenstateApp 683
Programs, ElectricFieldApp 367—369
Programs, FallingBallApp 22
Programs, FallingParticleApp 27—28
Programs, FallingParticleCalcApp 32—33
Programs, FallingParticleODEApp 56
Programs, FallingParticlePlotApp 33—34
Programs, FermatApp 242
Programs, FeynmanPlateModel 744—745
Programs, FFT2DCalculationApp 334—335
Programs, FFTApp 330
Programs, FFTCalculationApp 332
Programs, FieldLineApp 373—374
Programs, FirstFallingBallApp 14—15
Programs, FrauhoferApp 352—354
Programs, FreeRotationSpaceView 752—753
Programs, FreewayApp 539
Programs, FresnelApp 355—357
Programs, GeneticApp 563—564
Programs, GraphicalSolutionApp 149—151
Programs, HopfieldApp 552—554
Programs, HuygensApp 347—349
Programs, IdealDemonApp 594—595
Programs, IntegralCalcApp 418—419
Programs, Interaction3DApp 733—734
Programs, IsingAutoCorrelatorApp 615—617
Programs, IterateMapApp 142—144
Programs, KochApp 499—501
Programs, LagrangelnterpolatorApp 447—448
Programs, LaplaceApp 380—382
Programs, LifeApp 541—542
Programs, LJParticlesApp 268—269
Programs, MaxwellApp 404—405
Programs, Methane 730
Programs, MethaneApp 731—732
Programs, MonteCarloEstimatorApp 423—424
Programs, MouseApp 120
Programs, NumericallntegrationApp 415—416
Programs, OneDimensionalAutomatonApp 531—532
Programs, PendulumApp 92
Programs, PercolationApp 455—457
Programs, PlanetApp 115—116
Programs, PlotFrameApp 29—30
Programs, PoincareApp 170—172
Programs, PolynomialApp 445—446
Programs, ProjectileApp 58—59
Programs, QMWalkApp 705—706
Programs, QuatemionApp 741—742
Programs, RadiatingEFieldApp 395—396
Programs, RasterFrameApp 362—363
Programs, RecursiveFixedPointApp 163—165
Programs, RGApp 476—478
Programs, RigidBodyModel 749—751
Programs, Rotation3D 728—729
Programs, Scalar2DFrameApp 363
Programs, ScatterApp 128—129
Programs, SchroedingerApp 677—678
Programs, SecondLawPlotApp 114
Programs, SimulationPlotApp 35—36
Programs, SpinningTopModel 753—754
Programs, SpinningTopSpaceView 754—755
Programs, SynthesizeApp 323—324
Programs, TDHalfStepApp 693—694
Programs, ThreeBodyApp 136
Programs, TorqueApp 737—739
Programs, VectorPlotApp 409
Programs, WalkerApp 205—206
Propagator 707
Python 4
Quality factor (Q) 101
Quantum systems Chapter 16
Quantum systems, bound states 679—684
Quantum systems, diffusion quantum Monte Carlo 707—711
Quantum systems, Green's function 707 709
Quantum systems, momentum space 695—698
Quantum systems, path integral quantum Monte Carlo 711—714
Quantum systems, random walk quantum Monte Carlo 701—707
Quantum systems, split-operator algorithm 698
Quantum systems, time-dependent solutions 689—695
Quantum systems, variational methods 698—701
Quasi-ergodic hypothesis 274 301 339 593
Quasiequilibrium 644
Quasiperiodic 181 186
Quaternions 740—753 759—762
Radial distribution function 280—282 292 627
Radiation from accelerated charges 390—398
Random deposition 519
Random number generator 197—198 236—240 649—650
Random process 191 Chapter
Random walk 203—217
Random walk, continuum 212
Random walk, mean first passage time 210
Random walk, modified 210—217
Random walk, multistate 211
Random walk, persistent 211
Random walk, polymer application 225—233
Random walk, quantum Monte Carlo 701—707
Random walk, relation to diffusion 216 249—251
Random walk, self-avoiding 226—227
Random walk, self-avoiding pivot algorithm 246—247
Random walk, solution to Laplace's equation 387—390
Random walk, true self-avoiding 232—233
Real-time control 3
Recursion 149—151 499—502
Recursion relation 479
Reduced mass 109
Refraction 243
Relaxation methods 380—387
Relaxation methods, Gauss — Seidel 383—384
Relaxation methods, Jacobi 382—383
Relaxation methods, multigrid 407—408
Relaxation time 93
Renormalization group 475—484
Reptation method 228—231
Resonance 101 137
Retarded time 390
Rigid body dynamics 735—756
Root finding, bisection method 163 182 191—192 392
Root finding, Newton's method 190—192
Roundoff error 102
Sample variance 426
Ðåêëàìà