Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Hollander Fr. — Large deviations
Hollander Fr. — Large deviations

Читать книгу
бесплатно

Скачать книгу с нашего сайта нельзя

Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Large deviations

Автор: Hollander Fr.

Аннотация:

This is a useful book on large deviations. It can be used as a text for advanced PhD students with a really good background in mathematical analysis and probability theory.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2000

Количество страниц: 142

Добавлена в каталог: 12.10.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
$(P_{n})$      III.1
$(Q_{n})$      III.5
$(X_{i})$      I.1 I.3 II.1 IV.1 VI.1 VII.1
$(Y_{i})$      III.5 IV.1
$A^{\omega,r}(x)$      X.6
$A_{r,\beta}(i,j)$      IX.7
$A_{r,\beta}^{\circlearrowleft}(i,j)$      IX.9
$A_{\theta}$      IX.6
$A_{\theta}^{\circlearrowleft}$      IX.9
$B^{\omega,r}(x)$      X.6
$B_{a}(\rho)$      II.1
$B_{a}(\rho\times\rho)$      II.2
$B_{a}(\rho^{N})$      II.5
$B_{a}(\rho^{\mathbb{N}})$      II.5
$B_{\epsilon}(x)$      III.1
$C_{b}(\chi)$      III.2
$c_{\rho}(x,y)$      VIII.4
$d(\mu,\nu)$      II.1 II.2 II.5 II.7
$D_{I}$      I.3
$d_{N}(\pi_{N}\mu,\pi_{N}\nu)$      II.5
$D_{\Lambda^{*}}$      V.2
$D_{\lambda}$      V.1
$D_{\phi}$      I.4
$f(x;\omega,\pi)$      X.1
$F_{d}(\nu)$      VIII.6
$F_{\beta}(\nu)$      IX.6
$F_{\beta}^{\circlearrowleft}(\nu)$      IX.9
$g(x;\omega)$      X.1
$H(Q\mid W\times\mu)$      X.3
$H(\nu\mid\overline{\nu}\times\rho)$      II.2 II.5
$H(\nu\mid\rho)$      II.1
$H(\pi_{N}\nu\mid\pi_{N-1}\nu\times\rho)$      II.5
$H_{N}(\underline{x},\underline{\omega})$      X.1
$I(\nu)$      VIII.2
$I(\theta)$      VII.2
$I_{0}(z)$      VI.2
$I_{n}$      IX.1
$I_{P}(\nu)$      IV.2
$I_{P}^{2}(\nu)$      IV.2
$I_{P}^{N}(\nu)$      IV.3
$I_{P}^{\infty}(\nu)$      IV.3
$I_{\beta}(\theta)$      IX.9
$I_{\rho}(\nu)$      II.1 II.7
$I_{\rho}^{2}(\nu)$      II.2
$I_{\rho}^{N}(\nu)$      II.5
$I_{\rho}^{\infty}(\nu)$      II.5
$J(\nu)$      VIII.2
$J_{\beta}(\theta)$, $\widehat{J}_{\beta}(\theta)$      IX.3
$J_{\beta}^{\circlearrowleft}(\theta)$      IX.9
$L_{n}$      I.1 II.1
$l_{n}(x)$      IX.2
$L_{N}(\underline{x}[0,T],\underline{\omega})$      X.2
$L_{n}^{2}$      II.2
$L_{n}^{N}$      II.5
$L_{t}$      IV.4
$l_{t}(z)$      VIII.5
$P^{Q}$      X.4
$P^{\omega\cdot Q}$      X.4
$P_{st}$      IV.1
$P_{\theta}(i,j)$      IX.5
$Q^{\omega}$      X.5
$Q_{*}$      X.5
$Q_{*}^{\omega}$      X.5
$q_{t}$      X.5
$q_{t}^{\omega}$      X.5
$r^{**}(\beta)$      IX.9
$r^{*}(\beta)$      IX.8
$R_{n}$      II.5
$r_{\beta}(\theta)$      IX.7
$r_{\eta}(\theta)$      VII.7
$S_{n}$      I.1 I.3 IX.1
$T_{k}$      VII.3
$T_{N}$      VIII.4
$T_{n}(X_{1},...,X_{n})$      VI.1
$V_{\alpha}$      VII.1
$v_{\rho}(x)$      VIII.3
$w_{\rho}(x)$      VIII.4
$Z_{n}$      V.1
$\alpha$      VII.1
$\alpha_{n}$      VI.1
$\beta^{\omega,q}(x)$      X.4
$\beta_{n}$      VI.1
$\chi$      III.1
$\chi(\rho)$      VIII.3
$\chi^{N}(\rho)$, $\widehat{\chi}^{N}(\rho)$      VIII.5
$\circledast_{n}$      IX.3
$\circledcirc_{n}$      IX.4
$\Delta_{n}$      VI.1
$\eta$      VII.7
$\gamma$      II.1
$\gamma_{0}$, $\gamma_{1}$      VI.1
$\lambda$      X.1
$\lambda(r)$      VII.3
$\lambda(t)$      V.1
$\Lambda^{*}(x)$      V.1
$\lambda_{r,\beta}$      IX.7
$\lambda_{\eta}(r)$      VII.7
$\langle\cdot,\cdot\rangle$      IV.4 V.1
$\langle\cdot\rangle$      VII.1 VIII.1
$\mathbb{E}$      I.1
$\mathbb{E}_{x}$      VIII.1
$\mathbb{E}_{\omega}$      VII.1
$\mathbb{P}$      I.1 III.7 V.1 VI.1 VII.1
$\mathbb{P}^{X}$, $\mathbb{P}^{Y}$      IV.1
$\mathbb{P}^{\underline{\omega}}_{N}$      X.1
$\mathbb{P}_{n}$      IX.1
$\mathbb{P}_{x}$      VIII.1
$\mathbb{P}_{\omega}$      VII.1
$\mathbb{Q}_{n}^{\beta}$      IX.1
$\mathbb{S}_{N}$      X.3
$\mathbb{W}_{N}$      X.1
$\mathcal{Y}$      III.5
$\mathfrak{M}_{1}(\Gamma)$      II.1
$\mathfrak{M}_{1}(\mathbb{N})$      II.7
$\mu$      I.1 I.3 II.1 II.2 II.5 II.7 X.1
$\nu$      II.1 II.2 II.5 II.7
$\nu^{Q}$      X.5
$\omega$      VII.1
$\overline{\nu}$      II.2 II.5
$\Phi_{\mu}(r)$      X.6
$\Pi_{n}$      II.5 II.7
$\pi_{s}$      IV.1
$\pi_{t}$      X.4
$\rho$      II.1 VIII.1
$\rho_{x}$      VII.1
$\Sigma$      I.1 I.3 II.5
$\sigma^{*}(\beta)$      IX.10
$\simeq$      I.1
$\tau_{r,\beta}$      IX.7
$\theta^{**}(\beta)$      IX.9
$\theta^{*}(\beta)$      IX.2
$\underline{b}(t)$      X.1
$\underline{b}[0,T]$      X.1
$\underline{x}$      X.1
$\underline{x}(t)$      X.1
$\underline{x}[0,T]$      X.1
$\underline{\omega}$      X.1
$\varphi(r,\omega)$      VII.3
$\varphi(t)$      I.3
$\varphi_{0}(t)$      VI.2
$\varphi_{n}(t)$      V.1
$\widehat{f}$      I.3
$\widehat{h}(\nu)$      II.6
$\widehat{I}(A)$      III.7
$\widehat{I}_{n}$      IX.2
$\widehat{J}_{\beta}^{\circlearrowleft}(\theta)$      IX.9
$\widehat{K}_{n}(\theta)$      IX.3
$\widetilde{I}_{G}(\nu)$      IV.4
$\widetilde{K}_{n}(\theta)$      IX.4
$\widetilde{\mathfrak{M}}_{1}(\Gamma\times\Gamma)$      II.2
$\widetilde{\mathfrak{M}}_{1}(\Gamma^{N})$      II.5
$\widetilde{\mathfrak{M}}_{1}(\Gamma^{\mathbb{N}})$      II.5
$\widetilde{\varphi}(r,\omega)$      VII.3
$\xi(x)$      VIII.1
Affine      II.2
Annealed measure      VII.8
Bridge      IX.3
Brownian motion      X.1
Closure      III.1
CLT      I.1
Continuous, map      III.5
Contraction principle, general      III.5
Contraction principle, Sanov — Cramer      II.4
Contraction, by linear transformation      III.7
Convex, hull      III.7
Convex, locally      III.7
Correlation coefficient      VIII.4
Decision test, Neyman — Pearson      VI.1
Diffusion      X.1
Dirichlet form      IV.4
Distance, Euclidean      V.1
Distance, myopic total variation      II.5
Distance, on Polish space      III.1
Distance, total variation      II.1 II.2 II.5 II.7
e      V.2
Empirical average      I.3
Empirical double layer measure      X.2
Empirical measure      II.1 II.7
Empirical measure, N-word      II.5
Empirical measure, pair      II.2
Empirical process      II.5
Entropy, relative      II.1 II.2 II.5
Entropy, relative, specific      II.6
Euler circuit      II.2
Exposed, hyperplane      V.1
Exposed, point      V.1
f      I.3 III.2 III.3 IV.1
F(Q)      X.2
Feynman — Kac formula      VIII.1
Function, affine      II.2 II.5 IV.2
Function, convex      III.7
Function, cumulant generating      I.3
Function, exponential integral of      III.3 III.4
Function, lower semi-continuous      I.3 III.1
Function, moment generating      I.3
Function, rate      I.1 III.1
Function, steep      I.4 V.2
G      IV.4
Gibbs measure      X.1
H(t)      VIII.1
Hamiltonian      X.1
Hitting time      VII.3
I(Q)      X.3
I(S)      III.1
i(x)      III.1
I(z)      I.3
I-continuous      III.2
int, cl      III.1
Interior      III.1
Intermittency      VIII.2
J(u)      VII.3
J(y)      III.5
Kuramoto model      X.6
L(X)      IX.4
Ldp      III.1
LDP, weak      III.6
Local time      VIII.5 IX.2 IX.4
Locally convex      III.7
Logarithmically equivalent      I.1
Lower semi-continuous      I.3 III.1
m(X)      IX.5
Markov chain, continuous-time      IV.4
Markov chain, discrete-time      IV.2
Markov chain, generator      IV.4
Markov chain, reversible      IV.4
Markov chain, stationary      IV.1
Markov chain, transition kernel      IV.1
McKean — Vlasov equation      X.5
Measure, ergodic      II.6
Measure, exponentially tight family      III.2
Measure, occupation time      IV.3
Parabolic Anderson model      VIII.1
Perron — Frobenius      IV.3 V.4 IX.7
Polish space      II.1 III.1
Polymer      IX.1
q      X.4
Quenched measure      VII.8
R      VII.3 IX.7 X.6
Random, bridge      IX.3
Random, continued fractions      VII.5
Random, drift      VII.1 X.4
Random, homogeneous walk      VII.7
Random, medium      VIII.1
Random, simple      VIII.1 IX.1
Random, walk in random environment      VII.1
Random, walk, self-repellent      IX.1
Relative interior      V.2
rint      V.2
Set, closed      III.1
Set, compact      III.1 III.6
Set, continuity      III.2
Set, level      I.3 III.1
Set, open      III.1
Set, relative interior      V.2
SLLN      I.1
Speed      VII.2 IX.2
Stirling's formula      I.2
Subadditive sequence      III.7
t      III.5
Theorem, Birkhoff Ergodic      II.2
Theorem, Bryc      III.3 V.3
Theorem, Cramer      I.3 I.4 I.5 II.4
Theorem, Gaertner — Ellis      V.2
Theorem, Kolmogorov Extension      II.5
Theorem, Sanov      II.1 II.3 II.4
Theorem, Shannon — McMillan — Breiman      II.6
Transform, Cramer      I.3
Transform, Legendre      I.4 V.1
u(x,t)      VIII.1
Varadhan's lemma      III.3
Varadhan's Lemma, inverse      III.3
w      X.1
Z(t)      VIII.1
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2017
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте