| 
		        
			        |  |  
			        |  |  
					| Àâòîðèçàöèÿ |  
					|  |  
			        |  |  
			        | Ïîèñê ïî óêàçàòåëÿì |  
			        | 
 |  
			        |  |  
			        |  |  
			        |  |  
                    |  |  
			        |  |  
			        |  |  |  | 
		|  |  
                    | Tabor M. — Chaos and Integrability in Nonlinear Dynamics: An Introduction |  
                    |  |  
			        |  |  
                    | Ïðåäìåòíûé óêàçàòåëü |  
                    | | Abel, Niels      337 Abelian functions, integrals, varieties      337
 Action integral      43
 Action-angle variables, for many degrees of freedom      68—70 74—77
 Action-angle variables, for one degree of freedom      65—68
 Action-angle variables, in semiclassical quantization      234 235
 Airy function      3
 Airy function, and uniform approximations      274
 Algebraic curves      336
 Algebraically integrable systems      347
 Analytic structure, and integrability      39
 Analytic structure, of elliptic functions      11
 Anosov systems      173
 Anti-kink solution      306
 Area preserving maps, and Hamiltonian systems      132
 Area preserving maps, and surface of section      123
 Area preserving maps, invertible      130
 Area preserving maps, on the plane      128
 Area preserving maps, twist maps      126
 Arnold diffusion      74
 Averaging, in canonical perturbation theory      98
 Baker's transformation      171
 Bernoulli equation      93
 Bernoulli system      171
 Bifurcation, Hopf      see “Hopf bifurcation theory”
 Bifurcation, period doubling      see “Period doubling”
 Bifurcation, pitchfork      225
 Bifurcation, saddle-node      225
 Bifurcation, subcritical      198
 Bifurcation, supercritical      198
 Bifurcation, tangent      224
 Bions      311
 Bohr — Sommerfeld quantization      233
 Boutroux transformation      328
 Branch points, logarithmic      335
 Branch points, rational      342
 Breathers      311
 Burgers equation      352
 C-systems      173
 Canonical perturbation theory, and small divisors      104
 Canonical perturbation theory, for many degrees of freedom      102—104
 Canonical perturbation theory, for perturbed oscillator      101
 Canonical perturbation theory, to first order      98—100
 Canonical perturbation theory, to higher orders      100—101
 Canonical transformations      54—63
 Cantor set      202 203
 Cantori      135
 Cat map      168—171
 Catastrophe theory      275
 Cauchy — Kovaleskaya theorem      352
 Caustics      233
 Caustics, in quantum maps      260
 Chaos, definition of      34
 Chaotic advection      176
 Characteristics      282
 Clairaut's equation      333
 Closed orbits      77
 Closed orbits, and semiclassical quantization      264—272
 Closed orbits, and spectral rigidity      246
 cn function      9
 Conservation laws      287—288
 Conservation laws, and Gardner equation      289
 Conservative systems, phase portraits of      17
 Constant of motion      2
 Constraints, holonomic      43 49
 Continued fractions      110—111
 Continued fractions, and Greene's method      164
 Contravariant variables      47 81
 Correspondence identities      234
 Correspondence principle      241
 Couette flow      192—194
 Covariant variables      47 81
 Cremona transformation      129
 Crisis      221
 Curry attractor      210
 Cyclic coordinates      46
 Damped oscillator      5
 Damped oscillator, with driving      36
 de Broglie wavelength      230
 Deformation parameter      295
 Density of states, and closed orbit quantization      264—272
 Density of states, Thomas — Fermi formula      243
 Differential forms, 1-form      61 83
 Differential forms, 2-form      55 85
 Differential forms, and Stokes' theorem      87
 Differential forms, n-form      86
 Direct scattering problem      291 293—294
 Discrete Lagrangians      133
 Discrete Lagrangians, and quantum maps      256
 Dispersion relation, for KdV equation      284
 Doubly periodic functions      9 10
 Driven oscillator      34
 Duffing oscillator      35
 EBK quantization      236
 Einstein, and semiclassical quantization      235
 Elliptic curves      336
 Elliptic fixed points      24 see
 Elliptic fixed points, and Poincare — Birkhoff fixed point theorem      134—142
 Elliptic fixed points, for area-preserving maps      137
 Elliptic functions, analytic structure of      336—337
 Elliptic functions, and algebraic geometry      7 336—337
 Elliptic functions, and solution to pendulum equation      11—13
 Elliptic functions, general properties of      39—41
 Elliptic functions, of Jacobi      7—9
 Elliptic functions, of Weierstrass      10
 Elliptic functions, periodic structure of      10
 Elliptic integrals      6 8
 Elliptic integrals, general properties of      39—41
 Energy shell      73
 Entire functions      10
 Entire functions, and integrability      347—348
 Equilibrium points, of pendulum      16
 Ergodicity      73 167—168
 Essential singularities      326 332
 Euler — Poisson equations      324
 Eulerian description of fluid dynamics      174
 Extended phase space      51
 Exterior, differentiation      86
 Exterior, product      85
 Feigenbaum number      215
 Fermi — Ulam — Pasta (FUP) experiment, and KdV equation      280
 Fermi — Ulam — Pasta (FUP) experiment, and statistical sharing of energy      105
 First integral      2
 First variation, of action integral      43
 Fixed points, classification of, elliptic      24
 Fixed points, classification of, hyperbolic      23
 Fixed points, classification of, improper node, stable and unstable      25
 Fixed points, classification of, node, stable and unstable      22—23
 Fixed points, classification of, spiral point, stable and unstable      23
 Fixed points, classification of, star, stable and unstable      25
 Fixed points, examples of, damped linear oscillator      25
 Fixed points, examples of, pendulum      25
 Fixed points, examples of, predator-prey equations      26—29
 Fixed points, failure of analysis      29
 Fourier transforms, and linear evolution equations      292
 Fractals      203—204
 Functional derivative      311—314
 Functional iteration      216
 Functional renormalization group      220
 Fundamental problem of Poincare      105
 Galilean invariance of KdV equation      290
 Gardner equation      289
 Gelfand — Levitan — Marchenko equation      295
 General and singular solutions      333
 Generalized coordinates      42
 Generalized momenta, as covariant variables      47 82
 Generalized momenta, as gradient of action      48
 Generalized momenta, properties of      47—48
 Generating functions      58—63
 Golden mean, and continued fractions      111
 
 | Golden mean, and Greene's method      167 Green function, in quantum mechanics      264
 Greene's method, and onset of chaos      163—167
 Hamilton — Jacobi equation, and canonical perturbation theory      97—98
 Hamilton — Jacobi equation, for one degree of freedom      64—65
 Hamilton — Jacobi equation, time dependent      63
 Hamilton — Jacobi equation, time independent      63
 Hamilton's principle      42—43
 Hamiltonian      96
 Hamiltonian structure, of KdV equation      314
 Hamiltonian structure, of NLS equation      316
 Hamiltonian, equations of motion      50—52
 Hamiltonian, function      49—50
 Hamiltonian, transformation to      48 80—81
 Hausdorf — Besicovitch dimension      203
 Henon — Heiles Hamiltonian, analytic structure of      337—344
 Henon — Heiles Hamiltonian, eigenfunctions of      251—252
 Henon — Heiles Hamiltonian, integrable cases of      332
 Henon — Heiles Hamiltonian, surface of section of      121—122
 Henon's mapping, area preserving      129—132
 Henon's mapping, strange attractor      212—214
 Heteroclinic points, of cat map      171
 Heteroclinic points, properties of      142—146
 Homoclinic orbit      143
 Homoclinic oscillations      147
 Homoclinic points, of cat map      171
 Homoclinic points, properties of      142—146
 Homogeneity of time      44
 Hopf bifurcation theory      197—199
 Hopf — Cole transformation      352
 Hyperbolic fixed points      23 see
 Hyperbolic fixed points, and Poincare — Birkhoff fixed point theorem      139—142
 Hyperbolic fixed points, for area preserving maps      137
 Hyperbolic-with-reflection fixed point      137
 Hyperelliptic integrals      37 337
 Inertial frame      44
 Inertial manifolds      212
 Integrable Hamiltonians, and partial differential equations      311—316
 Integrable Hamiltonians, examples of      74—77
 Integrable Hamiltonians, properties of      70—74
 Integration by quadrature      2—4
 Integration of differential equations, further remarks on      36—39
 Intermittency      203 210
 Internal crisis      221
 Inverse scattering problem      294—295
 Inverse scattering transform (IST), basic principles      290—295
 Inverse scattering transform (IST), for KdV equation      295—303
 Inverse scattering transform (IST), for mKdV equation      310—311
 Inverse scattering transform (IST), for NLS equation      310
 Inverse scattering transform (IST), for Sine — Gordon equation      310
 Invertible mappings      130 213
 Irrational numbers      111
 Irregular spectrum, definition of      240
 Irregular spectrum, general properties of eigenfunctions      246—254
 Irregular spectrum, general properties of eigenvalues      240—246
 Isoenergetic nondegeneracy      113—114
 Isospectral deformation      295
 Isotropy of space      44
 Jacobi elliptic functions      see “Elliptic functions”
 Jacobi identity      53 315
 Jacobian of transformation      56
 Journal bearing, chaotic advection experiment      176
 K-systems      173
 KAM theorem, basic ideas      105—107
 KAM theorem, for autonomous systems      113
 KAM theorem, for mappings      114
 KAM theorem, for periodically perturbed systems      115
 KAM theorem, for stable equilibrium points      116
 Kink solution      306
 Koch snowflake      203
 Kolmogorov entropy      151
 Korteweg — de Vries (KdV) equation, and discovery of soli ton      280—281
 Korteweg — de Vries (KdV) equation, basic properties of      282—290
 Korteweg — de Vries (KdV) equation, first derivation of      279
 Korteweg — de Vries (KdV) equation, Hamiltonian structure of      314—316
 Korteweg — de Vries (KdV) equation, inverse scattering transform of      295—299
 Korteweg — de Vries (KdV) equation, two-soliton solution of      299—302
 Kovalevskaya, Sofya      324
 Kovalevsky exponents      330
 Lagrangian description of fluid dynamics      174
 Lagrangian turbulence      176
 Lagrangian, discrete      133
 Lagrangian, equations of motion      44
 Lagrangian, function and Hamilton's principle      43—45
 Lagrangian, general properties of      45—47
 Lagrangian, manifold      239
 Lagrangian, transformation to Hamiltonian picture      48—50 80
 Landau — Hopf theory of turbulence      196
 Laser Doppler velocimetry      194
 Laurent series      329—330
 Lax pairs      303
 Lax pairs, and Painlev6 property      327 355
 Leading order analysis for singularities      328
 Legendre transformations      48 79—81
 Level spacing distributions      243—245
 Lie algebra      53
 Limit cycles      30—31 196
 Linear stability analysis      20—31 29 see
 Linearizing transformations      3
 Liouville's theorem      52
 Liouville's theorem, and canonical transformations      56
 Liouville's theorem, differential geometry of      88
 Local representations, of solutions to differential equations      328
 Localization theorems      254
 Logistic map, basic phenomenology of      215
 Logistic map, bifurcation diagram of      220—222
 Logistic map, crgodic behavior of      222—223
 Logistic map, noninvertibility of      223
 Logistic map, period doubling of      216—220
 Lorenz system, analytic structure of      344—347
 Lorenz system, general properties of      204—210
 Lorenz system, integrable cases of      345
 Lorenz system, strange attractor of      208—210
 Lorenz system, time-dependent integral of      346—347
 Lozi map      213
 Lyapunov exponents, computation of      151
 Lyapunov exponents, for flows      150
 Lyapunov exponents, for mappings      149
 Mappings, area-preserving, and Hamiltonians      132—133
 Mappings, area-preserving, and surface of section      123—126
 Mappings, area-preserving, Henon's      129—131
 Mappings, area-preserving, on the plane      128—132
 Mappings, area-preserving, twist      126—128
 Maslov indices      238
 Meromorphic functions      11
 Method of stationary phase      267 272—275
 microcanonical ensemble      73
 Microwave ionization of hydrogen      254
 Miura transformation      288—290
 Mixing      168
 Modified KdV (mKdV) equation, and Miura transformation      288
 Modified KdV (mKdV) equation, inverse scattering transform of      310
 Modified KdV (mKdV) equation, simple properties of      304—305
 Movable singularities, definition of      325
 Multiply periodic orbits      77
 N-soliton solutions      302
 Natural boundaries      349
 Navier — Stokes equation      188
 Ncwton — Raphson method, and superconvergent perturbation theory      107
 Newell — Whitehead equation      319
 Newtonian equations of motion      42
 Nodal patterns of eigenfunctions      254
 Noether's theorem      47
 Nonautonomous systems      33—36
 Nonautonomous systems, Nondegenerate Hamiltonians      75 78 See
 Noninvertible mapping      223
 Nonlinear feedback      35
 Nonlinear Fourier transform      299 see
 Nonlinear Schrodinger (NLS) equation      309 310
 normalization constant      294 See also “Direct scattering problem”
 
 | 
 |  |  |  | Ðåêëàìà |  |  |  |  |  |