Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Tabor M. — Chaos and Integrability in Nonlinear Dynamics: An Introduction
Tabor M. — Chaos and Integrability in Nonlinear Dynamics: An Introduction



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Chaos and Integrability in Nonlinear Dynamics: An Introduction

Àâòîð: Tabor M.

Àííîòàöèÿ:

Presents the newer field of chaos in nonlinear dynamics as a natural extension of classical mechanics as treated by differential equations. Employs Hamiltonian systems as the link between classical and nonlinear dynamics, emphasizing the concept of integrability. Also discusses nonintegrable dynamics, the fundamental KAM theorem, integrable partial differential equations, and soliton dynamics.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1984

Êîëè÷åñòâî ñòðàíèö: 384

Äîáàâëåíà â êàòàëîã: 13.04.2008

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Number theory, and properties of frequency      109—112
Oscillator, cubic      19—20
Oscillator, damped linear      5—6
Oscillator, Duffing      35 36
Oscillator, nonautonomous      33—36
Oscillator, quartic      19
Oscillator, simple harmonic      1—3
Overlapping resonances, basic idea of      156—157
Overlapping resonances, for standard map      162—163
Overlapping resonances, method of      154—163
Painleve property, and auto-Backlund transformations      355
Painleve property, and integrability      347
Painleve property, and Lax pairs      355
Painleve property, for ordinary differential equations      330 337—342
Painleve property, for partial differential equations      350—355
Painleve transcendents, first and second      37 286
Painleve transcendents, third      309
Painleve, Paul      327
Parabolic fixed points      138 see
Pendulum, and method of overlapping resonances      160—161
Pendulum, period of      13
Pendulum, phase portrait of      15
Pendulum, separatrix of      16—17
Pendulum, solution in terms of elliptic functions      11—12
Period doubling, basic mechanism of      216—220
Period doubling, bifurcation diagram of      220—222
Period doubling, in area-preserving maps      225
Period doubling, universality of      215 220
Period of oscillation      4
Period three orbits      221 224
Perturbation expansions, and secular terms      94—95
Perturbation expansions, for first-order ordinary differential equation      92—94
Perturbation expansions, for Hamilton — Jacobi equation      see “Canonical perturbation theory”
Perturbation expansions, for second-order ordinary differential equation      94—96
Perturbation expansions, regular      90—91
Perturbation expansions, singular      91—92
Phase portrait      14
Phase portrait, for conservative systems      17—20
Phase portrait, of pendulum      15—17
Phase space, of Hamiltonian systems      52
Phase space, symplectic structure of      47 52 81—88
Phase volume, preservation of, and Liouville's theorem      52 56—57
Phase volume, preservation of, differential geometry of      55 88
Phase volume, preservation of, under canonical transformations      55—56
Phase, curve      14
Phase, flow      14
Phase, plane      13
Pitchfork bifurcations      225
Poincare invariants      55 88
Poincare — Birkhoff fixed-point theorem      139—142
Poincare — Cartan invariant, and surface of section      183—184
Poincare — Cartan invariant, as differentia] 1-form      61 84
Poincare — Hopf theorem      71
Point transformations      55
Point vortices      191
Poiseuille flow      195
Poisson brackets, for KdV equation      315
Poisson brackets, in Hamiltonian mechanics      53—54
Poisson distribution, of energy level spacings      244
Poisson sum formula      266
Power spectra, and correspondence principle      241—242
Power spectra, for classical trajectories      152—154
Power spectra, of fluid dynamical experiments      193—194
Psi-series      331 334—335
Quadrature, integration by      2
Quantum maps, closed orbit quantization of      268—272
Quantum maps, evolution of      258—263
Quantum maps, formulation of      256—258
Quantum maps, propagators for      266—268
Quartic NLS equation      318
Quasi-energy spectrum      265
Quasiperiodic orbits      77
Radiation, in nonlinear evolution equations      303
Rayleigh number      205
Rayleigh — Benard convection, experimental observation of      194—195
Rayleigh — Benard convection, Lorenz model of      204—206
Recursion relations      330
Reduction of order, of ordinary differential equations      3
Reflection coefficient      294 see
Regular perturbation expansions      see “Perturbution expansions”
Regular spectrum, definition of      240
Regular spectrum, general properties of eigenfunctions      246—254
Regular spectrum, generul properties of eigenvalues      240—246
Residue, of periodic orbits      166 269
Resonances      see also “Overlapping resonances”
Resonances, illustration of      155
Resonances, in analytic structure analysis      330
Resonances, in simple oscillators      35
Reynolds number      188
Riccati equation      31 33
Roessler attractor      212
Ruelle — Takens theory      199—202
Russell, John Scott      279
Saddle-node bifurcation      225
Scattering data      291—292
Scattering data, evolution of      297—299
Schwarzian derivative      220
Secular terms, in perturbation theory      95
Self-focusing singularities      317—318
Semiclassical limit, as a singular limit      229
Semiclassical limit, for time-dependent problems      228—230
Semiclassical limit, for time-independent problems      230—232
Semiclassical wavepackets      238—239
Sensitivity to initial conditions      34
Sensitivity to perturbation, of energy levels      242—243
Separable systems      69—70
Separatrix      16
Separatrix, for pendulum      16—17
Separatrix, in cubic and quartic oscillators      19—20
Separatrix, stable and stable manifolds of      143
Shock formation      284
Similarity solutions, for KdV equation      285
Similarity solutions, for mKdV equation      305
Similarity solutions, for Sine — Gordon equation      309
Sine — Gordon equation, inverse scattering transform for      310
Sine — Gordon equation, simple properties of      305—309
Sine — Gordon equation, with damping and driving      319
Singular manifolds      351—352
Singular perturbation expansions      see “Perturbation expansions”
Singularity structure, and integrability      39 see
Singularity structure, and Kovalevskaya      324—327
Singularity structure, of nonintegrable systems      348—350
Smale horseshoe      201—202
Small divisors, problem of      102—104
sn function      9
Soliton, first observation of      279
Soliton, numerical discovery of      280—281
Soliton, theory of      see “Inverse scattering transform (IST)”
Spatial correlations, of wavefunctions      250
Spatiotemporal chaos      189
Spectral rigidity      245—246 272
Stability matrix      20 see
Stable manifolds      142—146
Stadium, eigenfunctions of      252—254
Stadium, eigenvalues of      243
Standard map, and Greene's method      164—167
Standard map, method of overlapping resonances for      162—163
Standard map, phase plane of      134—135
Strange attractors, basic properties of      199—202
Strange attractors, in Curry system      211
Strange attractors, in Duffing oscillator      36
Strange attractors, in Henon map      212—214
Strange attractors, in Lorenz system      208—210
Strange attractors, in Rossler system      212
Stream function      175 190
Stream lines      175
Stretching and folding      201
Subcritical bifurcation      198
Subduction      221
Superconvergent perturbation theory      107—109
Supercritical bifurcation      198
Surface of section, as a symplectic mapping      123—126 183—184
Surface of section, basic properties of      119—121
Surface of section, for chaotic advection experiment      177—181
Surface of section, for Henon — Heiles system      121—122
Surface of section, for time-dependent systems      125
Surface of section, for Toda lattice      122—123
Symplectic manifold      47
Tangent bifurcations      224
Tangent map      136—137
Tangent, bundle      47
Tangent, space      82
Tangent, vector      82
Tendrils, in Lagrangian turbulence      176 179
Tendrils, properties of      146—147
Three-body problem      89
Time-dependent integrals      6 31—33
Time-dependent integrals, of Lorenz system      346—347
Toda lattice      122—123
Tori, and definition of action variables      72
Tori, and integrable Hamiltonians      71
Tori, motion on      77—78
Tori, preservation of, under perturbation      79 106—107
Trace, of propagator      268
Transmission coefficient      294 see
Traveling wave solution, for KdV equation      284
Traveling wave solution, for mKdV equation      304
Traveling wave solution, for Sine — Gordon equation      306
Turbulence, concept of      189
Twist maps      126—128
Two-body problem      89
Two-dimensional NLS equation      317
Two-kink solution, for Sine — Gordon equation      307
Two-soliton solution, for KdV equation      299—302
Uniform approximation      233 274
Unstable manifolds      142—146
Van der Pohl oscillator      30
Variational derivative      312
Voltera equations      27
Vorticity      190 see
Wedge product      55 85
Weierstrass elliptic functions      see “Elliptic functions”
Whorls, in Lagrangian turbulence      176 179
Whorls, properties of      146—147
Wigner distribution      244
Wigner function      247—248
WKB expansion      232—233
Zakharov equations      318—319
1 2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå