| 
		        
			        |  |  
			        |  |  
					| Àâòîðèçàöèÿ |  
					|  |  
			        |  |  
			        | Ïîèñê ïî óêàçàòåëÿì |  
			        | 
 |  
			        |  |  
			        |  |  
			        |  |  
                    |  |  
			        |  |  
			        |  |  |  | 
		|  |  
                    | Tabor M. — Chaos and Integrability in Nonlinear Dynamics: An Introduction |  
                    |  |  
			        |  |  
                    | Ïðåäìåòíûé óêàçàòåëü |  
                    | | Number theory, and properties of frequency      109—112 Oscillator, cubic      19—20
 Oscillator, damped linear      5—6
 Oscillator, Duffing      35 36
 Oscillator, nonautonomous      33—36
 Oscillator, quartic      19
 Oscillator, simple harmonic      1—3
 Overlapping resonances, basic idea of      156—157
 Overlapping resonances, for standard map      162—163
 Overlapping resonances, method of      154—163
 Painleve property, and auto-Backlund transformations      355
 Painleve property, and integrability      347
 Painleve property, and Lax pairs      355
 Painleve property, for ordinary differential equations      330 337—342
 Painleve property, for partial differential equations      350—355
 Painleve transcendents, first and second      37 286
 Painleve transcendents, third      309
 Painleve, Paul      327
 Parabolic fixed points      138 see
 Pendulum, and method of overlapping resonances      160—161
 Pendulum, period of      13
 Pendulum, phase portrait of      15
 Pendulum, separatrix of      16—17
 Pendulum, solution in terms of elliptic functions      11—12
 Period doubling, basic mechanism of      216—220
 Period doubling, bifurcation diagram of      220—222
 Period doubling, in area-preserving maps      225
 Period doubling, universality of      215 220
 Period of oscillation      4
 Period three orbits      221 224
 Perturbation expansions, and secular terms      94—95
 Perturbation expansions, for first-order ordinary differential equation      92—94
 Perturbation expansions, for Hamilton — Jacobi equation      see “Canonical perturbation theory”
 Perturbation expansions, for second-order ordinary differential equation      94—96
 Perturbation expansions, regular      90—91
 Perturbation expansions, singular      91—92
 Phase portrait      14
 Phase portrait, for conservative systems      17—20
 Phase portrait, of pendulum      15—17
 Phase space, of Hamiltonian systems      52
 Phase space, symplectic structure of      47 52 81—88
 Phase volume, preservation of, and Liouville's theorem      52 56—57
 Phase volume, preservation of, differential geometry of      55 88
 Phase volume, preservation of, under canonical transformations      55—56
 Phase, curve      14
 Phase, flow      14
 Phase, plane      13
 Pitchfork bifurcations      225
 Poincare invariants      55 88
 Poincare — Birkhoff fixed-point theorem      139—142
 Poincare — Cartan invariant, and surface of section      183—184
 Poincare — Cartan invariant, as differentia] 1-form      61 84
 Poincare — Hopf theorem      71
 Point transformations      55
 Point vortices      191
 Poiseuille flow      195
 Poisson brackets, for KdV equation      315
 Poisson brackets, in Hamiltonian mechanics      53—54
 Poisson distribution, of energy level spacings      244
 Poisson sum formula      266
 Power spectra, and correspondence principle      241—242
 Power spectra, for classical trajectories      152—154
 Power spectra, of fluid dynamical experiments      193—194
 Psi-series      331 334—335
 Quadrature, integration by      2
 Quantum maps, closed orbit quantization of      268—272
 Quantum maps, evolution of      258—263
 Quantum maps, formulation of      256—258
 Quantum maps, propagators for      266—268
 Quartic NLS equation      318
 Quasi-energy spectrum      265
 Quasiperiodic orbits      77
 Radiation, in nonlinear evolution equations      303
 Rayleigh number      205
 Rayleigh — Benard convection, experimental observation of      194—195
 Rayleigh — Benard convection, Lorenz model of      204—206
 Recursion relations      330
 Reduction of order, of ordinary differential equations      3
 Reflection coefficient      294 see
 Regular perturbation expansions      see “Perturbution expansions”
 Regular spectrum, definition of      240
 Regular spectrum, general properties of eigenfunctions      246—254
 Regular spectrum, generul properties of eigenvalues      240—246
 Residue, of periodic orbits      166 269
 Resonances      see also “Overlapping resonances”
 Resonances, illustration of      155
 Resonances, in analytic structure analysis      330
 Resonances, in simple oscillators      35
 Reynolds number      188
 Riccati equation      31 33
 Roessler attractor      212
 Ruelle — Takens theory      199—202
 Russell, John Scott      279
 Saddle-node bifurcation      225
 Scattering data      291—292
 Scattering data, evolution of      297—299
 Schwarzian derivative      220
 Secular terms, in perturbation theory      95
 Self-focusing singularities      317—318
 
 | Semiclassical limit, as a singular limit      229 Semiclassical limit, for time-dependent problems      228—230
 Semiclassical limit, for time-independent problems      230—232
 Semiclassical wavepackets      238—239
 Sensitivity to initial conditions      34
 Sensitivity to perturbation, of energy levels      242—243
 Separable systems      69—70
 Separatrix      16
 Separatrix, for pendulum      16—17
 Separatrix, in cubic and quartic oscillators      19—20
 Separatrix, stable and stable manifolds of      143
 Shock formation      284
 Similarity solutions, for KdV equation      285
 Similarity solutions, for mKdV equation      305
 Similarity solutions, for Sine — Gordon equation      309
 Sine — Gordon equation, inverse scattering transform for      310
 Sine — Gordon equation, simple properties of      305—309
 Sine — Gordon equation, with damping and driving      319
 Singular manifolds      351—352
 Singular perturbation expansions      see “Perturbation expansions”
 Singularity structure, and integrability      39 see
 Singularity structure, and Kovalevskaya      324—327
 Singularity structure, of nonintegrable systems      348—350
 Smale horseshoe      201—202
 Small divisors, problem of      102—104
 sn function      9
 Soliton, first observation of      279
 Soliton, numerical discovery of      280—281
 Soliton, theory of      see “Inverse scattering transform (IST)”
 Spatial correlations, of wavefunctions      250
 Spatiotemporal chaos      189
 Spectral rigidity      245—246 272
 Stability matrix      20 see
 Stable manifolds      142—146
 Stadium, eigenfunctions of      252—254
 Stadium, eigenvalues of      243
 Standard map, and Greene's method      164—167
 Standard map, method of overlapping resonances for      162—163
 Standard map, phase plane of      134—135
 Strange attractors, basic properties of      199—202
 Strange attractors, in Curry system      211
 Strange attractors, in Duffing oscillator      36
 Strange attractors, in Henon map      212—214
 Strange attractors, in Lorenz system      208—210
 Strange attractors, in Rossler system      212
 Stream function      175 190
 Stream lines      175
 Stretching and folding      201
 Subcritical bifurcation      198
 Subduction      221
 Superconvergent perturbation theory      107—109
 Supercritical bifurcation      198
 Surface of section, as a symplectic mapping      123—126 183—184
 Surface of section, basic properties of      119—121
 Surface of section, for chaotic advection experiment      177—181
 Surface of section, for Henon — Heiles system      121—122
 Surface of section, for time-dependent systems      125
 Surface of section, for Toda lattice      122—123
 Symplectic manifold      47
 Tangent bifurcations      224
 Tangent map      136—137
 Tangent, bundle      47
 Tangent, space      82
 Tangent, vector      82
 Tendrils, in Lagrangian turbulence      176 179
 Tendrils, properties of      146—147
 Three-body problem      89
 Time-dependent integrals      6 31—33
 Time-dependent integrals, of Lorenz system      346—347
 Toda lattice      122—123
 Tori, and definition of action variables      72
 Tori, and integrable Hamiltonians      71
 Tori, motion on      77—78
 Tori, preservation of, under perturbation      79 106—107
 Trace, of propagator      268
 Transmission coefficient      294 see
 Traveling wave solution, for KdV equation      284
 Traveling wave solution, for mKdV equation      304
 Traveling wave solution, for Sine — Gordon equation      306
 Turbulence, concept of      189
 Twist maps      126—128
 Two-body problem      89
 Two-dimensional NLS equation      317
 Two-kink solution, for Sine — Gordon equation      307
 Two-soliton solution, for KdV equation      299—302
 Uniform approximation      233 274
 Unstable manifolds      142—146
 Van der Pohl oscillator      30
 Variational derivative      312
 Voltera equations      27
 Vorticity      190 see
 Wedge product      55 85
 Weierstrass elliptic functions      see “Elliptic functions”
 Whorls, in Lagrangian turbulence      176 179
 Whorls, properties of      146—147
 Wigner distribution      244
 Wigner function      247—248
 WKB expansion      232—233
 Zakharov equations      318—319
 
 | 
 |  |  |  | Ðåêëàìà |  |  |  |  |  |