Авторизация
Поиск по указателям
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 2) Fourier analysis, self-adjointness
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Methods of Modern mathematical physics (vol. 2) Fourier analysis, self-adjointness
Авторы: Reed M., Simon B.
Аннотация: This volume will serve several purposes: to provide an introduction for graduate students not previously acquainted with the material, to serve as a reference for mathematical physicists already working in the field, and to provide an introduction to various advanced topics which are difficult to understand in the literature. Not all the techniques and application are treated in the same depth. In general, we give a very thorough discussion of the mathematical techniques and applications in quatum mechanics, but provide only an introduction to the problems arising in quantum field theory, classical mechanics, and partial differential equations. Finally, some of the material developed in this volume will not find applications until Volume III. For all these reasons, this volume contains a great variety of subject matter. To help the reader select which material is important for him, we have provided a "Reader's Guide" at the end of each chapter.
Язык:
Рубрика: Математика /Математическая Физика /Учебники /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1975
Количество страниц: 370
Добавлена в каталог: 24.04.2005
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
-vector 201
inequalities 32
-contractive semigroup 255
A-bounded 162
A-closed 138
A-compact 340
A-orthogonal 138
A-symmetric 138
Absolute value of an operator 196
Absolutely continuous subspace 230
Accretive operator 240
action 275
Adjoint, Banach space 185
Adjoint, Hilbert space 186
Adjoint, unbounded operator 252
Almost completeness 338
Analytic Fredholm theorem 201
Analytic function, vector-valued 189—190
Analytic vector 201
Anharmonic oscillator 17 184 206 266 270
Annihilation operator 142 208 217 218 219
Antilinear operator 69
Approximate identity 251 9
Approximate symbol 98
Ascoli’s Theorem 30
Asymptotic symbol 98
Atomic model 304
Axiomatic quantum field theory 62
B.L.T. theorem 9
Baire category theorem 80
Baire measure 105 110
Banach — Alaoglu theorem 115
Bessel’s inequality 38
Bochner integral 119
Bochner — Schwartz theorem 14
Bochner’s theorem 13
Boson Fock space 53
Boundary value 19
Bounded holomorphic semigroup 248
Bounded operator 8
Bros — Epstein — Glaser lemma 21
Canonical commutation relations 274 218 232
Canonical conjugate momentum 215
Canonical form for compact operators 203
Canonical free field 215
Cauchy principal value 136
Closable operator 250 252—253
Closed graph theorem 83
Closed operator 250
Closed quadratic form 277
Closure 92
Closure of an operator 250
Commuting (unbounded) operators 271—272
Compact operator 199
Compact support, distributions 139 178 17
Compact support, functions 111
Complete, classically 148
Complete, quantum mechanically 155
Completely continuous operator (see “Compact operator”)
Cone 109 19
Cone, dual 19
Conjugation 143
Consistent norms 35
Continuous functional calculus 222
Contraction mapping theorem 151
Contraction mapping theorem, semigroup 235
Convex cone 109
Convex set 109
Convolution distributions 7
Convolution distributions, functions 6
Core 256
Coulomb gauge condition 190
Creation operator 142 204 209 217—219
Cyclic vector 226
Cyclicity of the vacuum 65
Davies — Faris theorem 186
Deficiency indices 138
Deficiency subspace 138
Densely bounded 272
Dirac operator 326 337
Distributions compact support 139 178 17
Domain 2
Dominated Convergence Theorem 17 24
Dual cone 19
Dunford functional calculus 245
Dunford — Taylor formula 316
Dyson expansion 282E
Elliptic operator 112
Elliptic regularity 49
Energy operator (see “Hamiltonian”)
Equivalent representations 231
Essential range 229
Essentially self-adjoint 256
Extended forward tube 68
Extension of an operator 250
Faris — Lavine theorem 199
Fermion Fock space 54
Feynman — Kac formula 279
Finite particle vector 208
Finite propagation speed 309—310
First resolvent formula 191
Fock space 53
Form core 277
Form domain 276
Form domain of operator 277
Forward 66
Forward tube 66
Fourier inversion theorem 3
Fourier transform 1
Frechet space 132
Free field 212 215 217 223
Free Green’s function 59
Free Hamiltonian mass m (quantum field theory) 220
Free propagator 60
Friedrichs extension 177
Functional calculus 222 225 245 263 286—287
Functions of rapid decrease 133
Fundamental solution 46
Garding — Wightman axioms 61—65
Gauge condition 190
Generalized convergence (see “Norm resolvent sense” “Strong
Generalized function 148
Generator group 268
Generator group, semigroup 237 246
Graph 83 250
Graph limits 293—294 268
Green’s functions 59
Hadamard’s three line theorem 33
Hahn — Banach theorem 75—77 130
Hamburger moment problem existence 145
Hamburger moment problem existence, uniqueness 205
Hamiltonian 303
Hamiltonian, free 55 220
Hamiltonian, time dependent 109
Hardy — Lebesgue class 109
Hausdorff — Young inequality 11
Heat equation 242 243 245 254
Hermite functions 142
Hermite functions, completeness 121
Hermitian operator (see “Symmetric operator”)
Hermitian scalar quantum field theory 62 212
Hilbert — Schmidt operators 210—211
Hilbert — Schmidt theorem 203
Hille — Yosida theorem 238
Hille — Yosida — Phillips theorem 247
Hoelder continuous 81
Hoelder inequality 68 34
Holomorphic semigroup 252
Holomorphic semigroup, bounded 248
Hunt's interpolation theorem 31
Hypercontractive semigroup 258
Hypersurface 78
Hypoelliptic 112
Inequalities 32
Infinitesimal generator, group 268
Infinitesimal generator, semigroup 237 246
Infinitesimally small form 168
Infinitesimally small operator 162
Interaction representation 283
Interpolation, norms 37
Interpolation, spaces 37
Interpolation, theorem, Calder — Lions 37
Interpolation, theorem, Hunt 31
Interpolation, theorem, Marcinkievvicz 31
Interpolation, theorem, Stein 40
Inverse Fourier transform 1
Irreducible 232
Jost points 68
Kalf — Walter — Schmincke — Simon theorem 186
Kallen — Lehmann representation 70
Kato — Rellich theorem 162
Kato — Rellich theorem, symmetric form 163
Kato’s inequality 183
Kato’s theorem 166
Klein — Gordon equation 293
KLMN theorem 167
Konrady’s trick 175
Light cone 63
Limit circle 1
Limit point 1
Liouville form 314
Liouville operator 314
Liouville’s theorem 315
Lipschitz 154
Local commutativity 65
Local Sobolev space 51
Lorentz group 63
Lorentz invariant inner product 63
Lorentz invariant inner product, measures 74
m-accretive 168 240
Magnetic field 173
Magnetic vector potential 173
Malgrange — Ehrenpreis theorem 48
Manifold stationary phase 101
Manifold stationary phase, Symplectic 337
Marcinkiewicz interpolation theorem 31
Mass hyperboloids 70
Mathieu equation 320
Maximal accretive operator 240
Maximal interval of existence 301
Maximal symmetric operator 141
Microscopic causality 65
Moments of a measure 145
Momentum operators 304 65
Monotone Convergence Theorem 17 24
Monotone convergence theorem for nets 106
Multiplicity free operators 231
Multiplicity theory 231—234
n-particle subspace 208
n-point function 66
Nelson’s analytic vector theorem 202
Nelson’s commutator theorem 193
nonrelativistic quantum mechanics 15
Norm resolvent sense, convergence in 284—291
Normal bundle 120
Normal operator 246
Normalized tangent functional 240
Norms consistent 35
Norms consistent, interpolating 37
Nuclear theorem 141 144
Number operator 142 204 208 220
Nussbaum’s lemma 201
of an unbounded operator 249
One-parameter unitary group 265
Open mapping theorem 82 132
Operator positively preserving 186
Operator positively preserving, relatively bounded 162
Operator positively preserving, self-adjoint 187 255
Operator positively preserving, symmetric 255 192
Oscillatory integral 100
Paley — Wiener theorems 16 17 18 23 109
Parallelogram law 38 63
Parseval’s relation 45 46
Partial isometry 197
PCT theorem 69
Phase function 99
Phase space 313
Plancherel theorem 10
Poincare group 63
Poincare Invariance 65
Poisson bracket 314
Polarization identity 63
Positive distribution 162
Positive linear functional 106
Positive operator 195
Positive quadratic form 276
Positive type distribution 14
Positive type distribution, function 12
Positive type distribution, weak 14
Positivity preserving operator 186
Principle of uniform boundedness 81 132
Product formula 295—297 245
Product of distributions 90
Product topology 94
Projection 187
Projection theorem 42
Projection valued measure 234—235 262—263
Projection, orthogonal 187
Propagator 60 282
Pseudo-differential operator 119
q-space 228
Quadratic form 276
Quantum field 64 (see also “Free field and Canonical free field”)
Quantum field theory 62
quantum mechanics 302—305
Quasi-analytic vector 327
Radon — Nikodym theorem 25
Reconstruction theorem 114
Regular directed point 92
Regular point 88
Regularity of the field 64
Regularity, Schroedinger's equation 54
Regularity, tempered distributions 139 144
Regularity, theorem (Weyl’s lemma) 53
Regularly imbedded submanifold of codimension k 78
Relatively bounded form 168
Relatively bounded operator 162
Relatively compact 340
Relativistic invariance 62
Resolvent 188 253
Resolvent set 188 253
Restricted Lorentz group 63
Restricted Poincare group 63
Riemann — Lebesgue lemma 10
Riesz lemma 43 41—44
Riesz — Fischer theorem 18 24 68
Riesz — Thorin theorem 27
Rigged Hilbert space 44
Rollnik potential 170
Scalar quantum field theory 62 212
Scale of spaces 278 44
Schrodinger equation 303
Schrodinger representation 274
Schwartz space 133
Schwarz inequality 38
Schwinger functions 114
Second quantization 302 308 208
Segal field operator 209
Segal quantization 209
Self-adjoint operator bounded 187
Реклама