|
|
Авторизация |
|
|
Поиск по указателям |
|
|
|
|
|
|
|
|
|
|
Haynes T.W., Hedetniemi S.T., Slater P.J. — Fundamentals of domination in graphs |
|
|
Предметный указатель |
-insensitive graphs 148
-set 19
2-edge connected dominating set 166
2-packing 50
Acquisition number 98
Acquisition sequence 98
Acquisition set 98
Algorithms, interval graphs 312
Algorithms, parallel 322
Algorithms, partial k-trees 321
Algorithms, permutation graphs 318
Algorithms, series-parallel graphs 320
Algorithms, trees 309
All-even parity set 191
All-odd parity set 191
All-parity realizable graph 192
APR 192
Automorphism class 127
Bipartite graph 6
Block 80
Block dominating set 166
Block graph 80
Bondage number 142
Boundary 39
Cardinality redundance 108
Cartesian product 7
Caterpillar 112
CEA 136
Center 5
CER 136
Characteristic function 87
Chessboard concepts 294
Chordal 77
Chordal, strongly 169
Chromatic number 9 250
Circuit 3
Circular arc graph 83
Circumference 11
Clique cover number 169
Clique domination number 167
CLOD 118
CLOP 124
CLOP, fractional 118
Closed-open irredundant 92
Complement 6
Complement related families 275
Complementarity 273
Complete graph 6
Complete multipartite graph 6
Component 6
Connected 3
Connected cut free domination 166
Connected domatic number 229
Connected dominating set 22 161
Connected domination number 22 247
Corona 41
Cover 58 281
Cover, edge 58
Cover, vertex 58
Covering number 58 282
Cubic 2
CVR 136
CYCLE 3
Cycle dominating set 22
Cylinder 7
d-domination number 222
D-parity dominating set 191
Decision problem 32
Degree sequence 2
Diameter 3 56
Directed graph 211
Distance 3 4 8
Distance-2 dominating set 22
Distance-k dominating set 201
Distance-k domination number 201
Domatic number 229 243
Domatically full 231
Domatically k-critical 232
Dominating clique 166
Dominating cycle 177
Dominating edge 168
Dominating function 87 117 255 288
Dominating function, closed neighborhood order 120
Dominating function, fractional closed neighborhood order 118
Dominating function, minimal 87
Dominating function, minus 260
Dominating function, signed 261
Dominating set 16
Domination chain 76
Domination number 18
Domination number, upper 18
Domination perfect 157
Domination sequence 76
Domination-forcing set 223
Double domination number 190
Eccentricity 3 8
Edge cover 58
Edge dominating set 59
Edge dominating set, independent 59
Edge domination number 59 247
Edge domination number, independent 59
Edge independence number 58
Efficiency 116
Efficient dominating set 108
Efficient domination number 108 285
Efficient open dominating set 115
Efficient y-dominating function 130 256 270
Efficiently dominatable 108
Efficiently open dominatable 115
Enclave 16
Enclaveless 16
Endvertex 5
External redundance numbers 97
External redundant 97 286
Factor dominating set 206
Factor domination number 206
Five Queens Problem 15
Forest 19
Fractional domination number 87 117 284
Fractional domination number, open 284
Fractional domination number, upper 87
Fractional efficient domination 177
Fractional irredundance number 87
Fractional packing number 177
Fractional redundance 118
Galaxy 55
girth 11 56
Global dominating set 208
Global domination number 208
grid 7 62
Grid graph 62
Hamiltonian 11
Hamiltonian cycle 11
Hereditary 68
Hypercube 23
Hypergraph 281
Identical 6
Idomatic number 229
Independence graph 81
Independence number 9
Independence number, lower 10
Independent 9
Independent domatic number 230
Independent dominating set 19
Independent domination number 19 156
Independent set 69
Induced subgraph 6
Influence 108
Integer programming 284
Interval graph 77
| Irredundance number 73 245
Irredundance number, open 91
Irredundance number, upper 73
Irredundant 72
Irredundant edge set 85
Irredundant function 87
isolate 16
Isomorphic 6
Iterated domination number 89
Iterated independence 89
Iterated independent domination number 89
Iterated irredundance number 88
Join 7
k-cube 113
k-dependence number 187
k-dependent set 187
k-dominating set 184
k-domination number 184
k-extendable 78
k-maximal P-set 95
k-minimal P-set 95
k-neighborhood, closed 201
k-neighborhood, open 201
k-tuple dominating set 189
k-tuple domination number 189
Kernel 28 29 211
Knockout 98
Knockout sequence 98
Knockout-with-replacement 99
kth power graph 8
Least dominating set 222
Line graph 7
Linear programming 283
Locating set 197
Locating-domination number 198
Location number 197
Locatiug-doininating set 198
Majority dominating function 289
Majority domination number 289
Matching 282
Matching number 58 282
Matrix, adjacency 4
Matrix, closed neighborhood 4
Matrix, distance 4
Matrix, incidence 4
Maximal independent set 10
Median 5
Middle graph 81
Minimal dominating function 87
Minimal dominating set 17
Minus dominating function 260
Minus domination number 260
Minus domination number, upper 260
Mixed dominating set 86
Mixed independent set 86
Mixed irredundant set 86
Multiproperty 220
Multiset 219
N-queens problem 37
Nearly perfect 115
Neighborhood hypergraph 283
Neighborhood knockout-with-replacement sequence 101
Neighborhood, closed 2
Neighborhood, open 2
NP-complete 33
NP-completeness 31
NP-completeness, connected dominating set 307
NP-completeness, dominating set 31 300
NP-completeness, independent set 305
NP-completeness, irredundant set 304
NP-completeness, total dominating set 308
NP-completeness, upper dominating set 306
NP-completeness, upper irredundant set 306
NP-hard 33
Open boundary 160
Open domination 159
Open fractional domination number 284
Open irredundant 91
Open it-redundance numbers 91
Open private neighbor 91
Optional dominating set 310
Optional domination number 310
Order 2
p-center 8
p-median 8
P-set 67
Packing function 117
Packing function, closed neighborhood order 124
Packing function, fractional closed neighborhood order 118
Packing number 50 116 285
Paired-domatic number 230
Paired-dominating set 169
Paired-domination 169
Paired-domination number 170
Paired-domination number, strong 177
Parity dimension 191
Path 3
Pendant edge 5
Perfect code 107 285
Perfect d-code 114
Perfect dominating set 115
Perfect matching 79
Perfect neighborhood number, lower 93
Perfect neighborhood number, upper 93
Perfect neighborhood set 92
Planar 58
Prioritized multiproperty 221
Private dominating set 92 171
Private k-neighbor 202
Private neighbor 18 72
Private neighbor, open 91
RADIUS 3
Redundance 108
Redundance number 285
Regular 2
Reinforcement number 146
Replacement vertex 99
Restrained domination 291
Seed property 286
Signed dominating function 261
Signed domination number 261
Signed domination number, upper 261
SIZE 2
spanning 11
Split graph 77
Stable transversal 83
Star 4
Strong dominating set 204
Strong domination number 204
Strong domination number, independent 218
Strong equality 172
Strong paired-dominating set 177
Strong stability number 282
Strongly chordal 169
Strongly equal 172
Strongly perfect 83
Strongly stable 282
Strongly stable sets 116
Subdivision 51
Subdivision graph 156
Subgraph 6
Superhereditary 68
Symmetric digraph 213
Torus 7
Total domatic number 229
Total dominating set 20 159
Total domination number 20 159 246 284
Tournament 212
Trail 3
Transitive 213
|
|
|
Реклама |
|
|
|