Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Foulds L.R. — Combinatorial optimization for undergraduates
Foulds L.R. — Combinatorial optimization for undergraduates

Читать книгу
бесплатно

Скачать книгу с нашего сайта нельзя

Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Combinatorial optimization for undergraduates

Автор: Foulds L.R.

Аннотация:

The book is intended for undergraduates in mathematics, engineering, business, or the physical or social sciences. It may also be useful as a reference text for practising engineers and scientists. The writing of this book was inspired through the experience of the author in teaching the material to undergraduate students in operations research, engineering, business, and mathematics at the University of Canterbury, New Zealand. This experience has confirmed the suspicion that it is often wise to adopt the following approach when teaching material of the nature contained in this book. When introducing a new topic, begin with a numerical problem which the students can readily understand; develop a solution technique by using it on this problem; then go on to general problems.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1984

Количество страниц: 237

Добавлена в каталог: 02.01.2014

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Activity networks, activity-arc model      155
Activity networks, activity-node model      148—155
Activity networks, earliest finish time      150
Activity networks, earliest start time      150
Activity networks, latest finish time      150
Activity networks, latest start time      150
Acyclic      see "Graph"
Adjacency graph      see "Graph"
Adjacent      210
Aeneid      3
Aho, A.V.      218
Algorithm      113
Appel, K.I.      215 222
ARC      210
Archimedes      3
Assignment problem      68—76
Assignment problem, Hungarian method      72
Backtracking      107
Balas' method      89 218
Basis      20
Bazaara, M.S.      217
Bell, E.J.      217
Bellman, R.E.      103 218
Bipartite      see "Graph"
Bondy, J.A.      222
Bound, greatest lower      4
Bound, least upper      4
Bound, lower      4
Bound, upper      4
Branch      210
Branch and bound      84
Breakthrough      137
Busacker, R.G.      220
Calculus of variations      3
Canonical form      20 23
Car pooling      185—192
Car pooling, nearest-point procedure      186
Car pooling, tree collapsing heuristic      190
Car pooling, triangular heuristic      188
Chromatic number      215
Clarke — Wright heuristic      see "Vehicle scheduling"
Closest-insertion heuristic      see "Traveling-salesman problem"
Cofactor      205
Combinatorial mathematics      111
Combinatorial optimization      3 111
Combinatorial optimization, fundamental algorithm of      11
Complementary slackness      40
complexity      111—113
Component      121
Component analysis strategy      see "Heuristics"
Connected      see "Graph"
Construction strategy      see "Heuristics"
Convex hull      174
Cook, S.A.      218
Cover      214
Criterion for optimality      30
Critical path method      150
Cutting planes      93
Daellenbach, H.G.      217
Dakin's method      84 217
Dantzig, G.B.      217
Decision tree      87
Degeneracy      31
Degree      see "Vertex"
Deltahedron method      see "Facilities layout"
Deo, N.      222
Descartes      114
Determinants      205
Determinants, properties of      207
Diagraph      211
Diagraph, connected      212
Diagraph, strongly connected      212
Dijkstras' method      125 219
Dominating set      214
Dreyfus, S.E.      218
Dual      35
Dual simplex method      42 100
Duality      34—48
Dynamic programming      103—110
Earliest finish time      see "Activity networks"
Earliest start time      see "Activity networks"
EDGE      210
Edmonds, J.      218
Embedded      214
Euclid      114
Euler      213 214
Evolutionary trees      193—201
Evolutionary trees, coalescement      197
Evolutionary trees, maximum parsimony      194
Evolutionary trees, nucleotide sequences      194
Evolutionary trees, Steiner points      198
Excess capacity      135
Extreme point      20
Extremum, global      4
Extremum, local      9
Facilities layout      10 161—168
Facilities layout, deltahedron method      165
feasible      19
Float, free      155
Float, total      154
Flow, backwards      136
Flow, conservation of      132
Flow, forward      136
Floyd's method      127 219
Ford, L.R.      220
Foulds, L.R.      216 219 221 222
Four Colour Conjecture      214
Fulkerson, D.R.      220
Garey, M.R.      219
Garfinkel, R.S.      217
Gass, S.I.      217
Gauss — Jordan elimination      24 209
Geometric heuristic      see "Traveling-salesman problem"
Gomory's method      97 218
Gomory's method, Gomory cut      100
Gowan, P.J.      220
Graham, R.L.      222
Graph      210
Graph theory      210
Graph, acyclic      212
Graph, adjacency      163
Graph, bipartite      214
Graph, connected      212
Graph, Hamiltonian      214
Graph, k-connected      212
Graph, maximally planar      214
Graph, partial      211
Graph, planar      214
Graph, spanning      211
Graph, weighted      215
Greenberg, N.      217
Hadley, G.      218
Haken, W.      215 222
Hamilton      214
Hamiltonian      214
Hamiltonian cycle      170
Hamiltonian shortest path      5
Harary, F.      222
Hendy, M.D.      222
Heuristics      113—117
Heuristics, component analysis strategy      115
Heuristics, construction strategy      114
Heuristics, design of      116
Heuristics, improvement strategy      115
Heuristics, learning strategy      115
Hopcroft, I.E.      218
Hu, T.C.      220
Hungarian method      see "Assignment problem"
Implicit enumeration      84
Improvement strategy      see "Heuristics"
incident      210
Independent set      214
Integer programming      80—102
Integer programming, all integer problem      82
Integer programming, general problem      81
Integer programming, mixed-integer problem      82 98
Integer programming, zero-one problem      82
Jarvis, J.J.      217
Johnson, D.S.      219
Junction      210
k-connected      see "Graph"
Karp, R.M.      219
Klein, M.      220
Koenig's Theorem      74
Koenigsberg bridge problem      213
Kruskals' method      see "Minimal spanning trees"
Labeling method      see "Maximum-flow problem"
Latest finish time      see "Activity networks"
Latest start time      see "Activity networks"
Lawler, E.L.      216 217
Learning strategy      see "Heuristics"
Least-cost method      see "Transportation problem"
Leibnitz      114
Lewis, P.M.      221
Line      210
Linear programming      12—43
Linear programming, graphical solution      14
Linear programming, standard form      17
Linear programming, two-phase method      26
Link      210
Lockyer, K.G.      221
Matching      214
Matching, perfect      214
Matrix      202
Matrix, adjacency      215
Matrix, adjoint      207
Matrix, cofactor      207
Matrix, identity      202
Matrix, incidence      215
Matrix, inverse      208
Matrix, multiplication of      204
Matrix, nonsingular      208
Matrix, properties of      204
Matrix, square      202
Matrix, subtraction of      204
Matrix, sum      203
Matrix, symmetric      5
Matrix, transpose of      203
Matrix, zero      202
Max-flow, min-cut Theorem      135
Maximally planar      see "Graph"
Maximum, global      4
Maximum, local      9
Maximum-flow problem      132
Maximum-flow problem, labeling method      135 140—141
Minieka, E.      220
Minimal cost network problem      10 142
Minimal cut      135
Minimal spanning trees      118 196
Minimal spanning trees, Kruskals' method      120 219
Minimal spanning trees, Prim's method      121 199 219
Minimum, global      4
Minimum, local      5
Minor      205
Mueller-Merbach, H.      219
Multigraph      211
Multiple optima      30
Murty, U.S.R.      222
Nearest-neighbor heuristic      see "Traveling-salesman problem"
Nearest-point procedure      see "Car pooling"
Nemhauser, G.L.      217 218
Network      211
Node      210
Northwest-corner method      see "Transportation problem"
NP-completeness      112
Optimal solution      3
Optimization      3
Optimization, linear      12—43
Optimization, nonlinear      12
Papadimitriou, C.      216
Pappas      114
Partial graph      see "Graph"
Partial subgraph      212
Path      212
Penny, E.D.      222
PERT      156
Phylogenies      193
Pivot      24
Planar      see "Graph"
Point      210
Policy      107
Polynomial time      112
Precedence, activities      148
Precedence, diagram      148
Prim's method      see "Minimal spanning trees"
Primal      35
Pseudograph      211
Queen Dido      3
Recursion, backwards      108
Recursion, forward      106
Recursive equations      107
Reducibility      112
RETURN      104
Robinson, D.F.      216 221
Rosencrantz, D.J.      221
Rounding      82
Scalar, multiplication      203
Scalar, product      203
Shortest path problems      103 123
Simplex method      12 20—34
Sink      211
Smith, D.K.      220
Solution, basic      20
Solution, degenerate      20 31
Solution, feasible      4
Source      211
Spanning graph      see "Graph"
Spanning subgraph      212
Stage      104
State      104
Stearns, R.E.      221
Steiglitz, K.      216
Steiner problem in phylogeny      198
Stepping-stone method      see "Transportation problem"
Strongly connected      see "Digraph"
Subgraph      211
Sweep heuristic      see "Vehicle scheduling"
Taha, H.A.      217
Trail      212
Transportation problem      10 48—64
Transportation problem, balanced      50
Transportation problem, least-cost method      56
Transportation problem, northwest-corner method      54
Transportation problem, stepping-stone method      60
Transportation problem, unbalanced      50
Transportation problem, Vogel approximation method      56
Transshipment problem      64—68
Transshipment problem, buffer stock      66
Traveling-salesman problem      10 170—178
Traveling-salesman problem, closest-insertion heuristic      196
Traveling-salesman problem, geometric heuristic      174
Traveling-salesman problem, nearest-neighbor heuristic      171
Tree-collapsing heuristic      see "Car pooling"
Triangular heuristic      see "Car pooling"
Two-phase method      see "Linear programming"
Ullman, I.D.      218
Variables, artificial      24
Variables, basic      20
Variables, nonbasic      20
Variables, slack      17
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2017
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте