Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Flanders H. — Differential Forms with Applications to the Physical Sciences
Flanders H. — Differential Forms with Applications to the Physical Sciences

Читать книгу
бесплатно

Скачать книгу с нашего сайта нельзя

Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Differential Forms with Applications to the Physical Sciences

Автор: Flanders H.

Аннотация:

A graduate-level text introducing the use of exterior differential forms as a powerful tool in the analysis of a variety of mathematical problems in the physical and engineering sciences. Directed primarily to graduate-level engineers and physical scientists, it has also been used successfully to introduce modern differential geometry to graduate students in mathematics.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1963

Количество страниц: 219

Добавлена в каталог: 01.12.2013

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Abraham, M.      195 197
Affine connection      143 ff
Affine frame      143
Affine group      164
Alexandroff, P.      197
Ampere's law      45 80
Becker, R.      195 197
Beltrami operator      44
Bi-invariant form      160
Bianchi identity      131
Blaschke, W.      44 197
Boundary of a simplex      58
Bounding cycle (boundary)      63
Bourbaki, N.      197
Brackets      179 ff
Buck, R.C.      197
Caratheodory, C.      104 197
Cartan, E.      3 4 96 99 108 176 197
Cauchy problem      4
Chains      61 ff
Chern, S.S.      198
Chevalley, C.      197
Christoffel symbols      129
Closed form      67
Commutative diagram      56
Completely integrable system      96
Complex projective space      73
Compound (of a transformation, matrix)      11 ff
Connection coefficients      129 144
Constants of structure      151
Contact transformation      183 ff 185
Continuity equation (fluids)      189
Convex surface      112
Curvature forms      122 144 148
Curvature matrix      122 130
CYCLE      63
Cylinder construction      27 ff
De Rham's theorems      66 ff
de Rham, G.      197
de Saint-Venant, B.      195
Debever, R.      198
Degree of a mapping      77 ff
Dirichlet integral      83
electromagnetic field      16 44
Euler equation of motion      191
Exact form      67
Exterior derivative      20 ff
Exterior multiplication      8 ff
Faraday's law      45
First integral      107 182
Flanders, H.      198
Flat Riemannian manifold      135
Fluid mechanics      188 ff
Flux      43
Frame manifold      146
Frenet formulas      122
Frobenius integration theorem      92 ff
Frobenius, G.      4
Gallissot, F.      198
Gauss integral      79
Gauss mean value theorem      85
Gauss, C.F.      43
Gaussian curvature      42 118 126
General linear group      156
Geodesic      119 134
Goldberg, S.I.      198
Golomb, M.      198
Goursat, E.      4 26 198
Grammian (Gram determinant)      12
Green's formulas      83
Green's function      86
Hadamard, J.      198
Hamilton — Jacobi equation      186
Hamiltonian      166
Hamiltonian equations of motion      167
Hamiltonian systems      166 ff
Heat equation      90 ff
Helmholtz law of conservation of vorticity      193
Hodge, W.V.D.      15 136 138 198
Homogeneous contact transformation      183
Hopf invariant      79
Hopf, H.      197
Hypersurfaces      116 ff
Infinitesimal contact transformation      187
Infinitesimal transformation      37
Injection (imbedding)      63
Integral surfaces      92
Integral-invariant      174
Jacobi identity (relation)      180 181
Jordan — Brouwer theorem      77
Kaehler, E.      4
Kinetic potential      166
Klein bottle      71
Kronecker integral      77
Lagrange brackets      183
Lagrangian      166
Lamb, H.      198
Laplace expansion (determinant)      10
Laplacian      38 ff 44 82
Last multiplier      107
Left invariant, form      150
Left translation      160
Lie bracket      180
Lie group      150 ff
Lie, S., third theorem of      108
Line of curvature      120
Linking number      79 ff
Liouville theorem (harmonic functions)      88
Liouville theorem (phase space)      178
Local coordinate neighborhood      49 ff
Lorentz inner product (or metric)      12 46
Love, A.E.H.      195 198
Manifold      49 ff
Maximum principle      85
Maxwell's equations      16 44
Mayer, A., system of      104
Mean curvature      42 118 126
Minimal surface      44
Misner, C.W.      198
Momentum components      166
Monge notation      126
Moving frames      4 32
Nickerson, H.K.      198
Ordinary differential equations      106 ff
Orientable manifold      51
Orientation (linear space)      15
Orthogonal coordinates      39
Orthogonal group      158
Orthonormal basis      13 ff
p-vector      5 ff
Parabolic equation      90
Parallel displacement      119 133 145
Parallel surface      113
periods      66 ff
Phase density      10 164
Phase space      163
Poincare lemma      2 4 27
Poincare metric (half-plane)      134
Poincare, H.      4
Poisson brackets      180
Poisson integral formula      87
Position space      163
Potential theory      82 ff
Poynting vector      47
Principal curvatures      42 120
Principal directions (hypersurfaces)      120
Projective plane      70
Projective space      73
Proper affine group      154
Proper orthogonal group      158
Relative integral-invariant      176
Riemann curvature tensor      122 131
Riemannian geometry      4 127
Right invariant form      151 159
Right translation      151
Seifert, H.      77 198
Signature (inner product)      13
Simplex, simplices      57 ff
Sommerfeld, A.J.W.      198
Special linear group      157
Spencer, D.C.      198
Spherical coordinates      34
Spherical harmonics      142
Standard n-simplex      60
Star operator      15 ff
State space      165
Steenrod, N.      198
Step transformation group      155
Stokes' theorem      2 64
Submanifold      52
Support function      114
Surfaces, differential geometry of      40 ff 112
Tangent vectors      53 ff
Tensors      2 ff
Threlfall, W.      77 198
Torsion      144 148
Trajectory      171
Umbilic point      148
Unimodular group      157
Vector field      54 179
Vorticity      192
Wheeler, J.A.      198
Whittaker, E.T.      198
Willmore, T.J.      198
Winding number      77 ff
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2017
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте