Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Guillemin V., Pollack A. — Differential topology | 6 |
Ãîâîðóõèí Â., Öèáóëèí Á. — Êîìïüþòåð â ìàòåìàòè÷åñêîì èññëåäîâàíèè | 165 |
Ìàíçîí Á.Ì. — Maple V power edition | 219 |
Heinbockel J.H. — Introduction to tensor calculus and continuum mechanics | 124 |
Rudin W. — Principles of Mathematical Analysis | 239-240, 285 |
Apostol T.M. — Calculus (vol 2) | 376 |
Herrmann D. — Algorithmen fur Chaos und Fraktale | 66, 283 |
Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 1) | 237, 261, 262, 318, 1489, 1492, 1494 |
Falconer K. — Fractal Geometry. Mathematical Foundations and applications | 182—184 |
Gomez C., Ruiz-Altaba M., Sierra G. — Quantum Groups in Two-Dimensional Physics | 328, 332 |
Kitchens B.P. — Symbolic dynamics: one-sided, two-sided and countable state markov shifts. | 53 |
Press W.H., Teukolsky S.A., Vetterling W.T. — Numerical recipes in FORTRAN77 | 297f., 304 |
Keisler H.J. — Elementary calculus | 336 |
Âîðîáüåâ Å.Ì. — Ââåäåíèå â ñèñòåìó "Ìàòåìàòèêà" | 98 |
Òêà÷åâ Ä.À. — AutoCAD 2005: Ñàìîó÷èòåëü | 369 |
Berger M. — A Panoramic View of Riemannian Geometry | 168 |
Falconer K. — Fractal Geometry: Mathematical Foundations and Applications | 198—201 |
Olver P.J. — Equivalence, Invariants and Symmetry | 15, 41, 45 |
Milnor J. — Dynamics in One Complex Variable | 2-1, 4-1, 4-6, 5-1ff |
Oprea J. — Differential Geometry and Its Applications | 60 |
Hajime Sato — Algebraic Topology: An Intuitive Approach | 10 |
Korsch H.J., Jodl H.-J. — Chaos: A Program Collection for the PC | 14, 306 |
Golub G.H., van Loan C.F. — Matrix Computations | 276 |
Fulton W. — Introduction to toric varieties | 36, 79 |
Barth W., Peters C., Van de Ven A. — Compact complex surfaces | 2, 4, 138, 189 |
Friedman.R. — Algebraic Surfaces and Holomorphic Vector Bundles | 132, 192 |
Schenck H. — Computational algebraic geometry | 71 |
Goldman R., Krasauskas R. — Topics in algebraic geometry and geometric modeling | 204 |
Eisenhart L.P. — An introduction to differential geometry with use of the tensor calculus | 227 |
Cameron P.J. — Combinatorics : Topics, Techniques, Algorithms | 302 |
Goldberg S.I. — Curvature and homology | 89—90 |
Silverman J.H. — The arithmetic of elliptic curves | 148, 149, 159, 160, 342, 346 |
Farkas H., Kra I. — Riemann Surfaces | 3, 18, 133, 197 |
Haynes T.W., Hedetniemi S.T., Slater P.J. — Fundamentals of domination in graphs | 7 |
Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 2) | 237, 261, 262, 318, 1489, 1492, 1494 |
Abell M.L., Braselton J.P. — Mathematica by Example | 504 |
Gunning R. — Lectures on Riemann Surfaces | 11, 137, 140 |
Lee J.M. — Introduction to Smooth Manifolds | 14 |
Millman R.S., Parker G.D. — Elements of Differential Geometry | 86 (1.1), 152 (10.4), 181, 197 (7.1) |
Isham J. — Modern Differential Geometry for Physics | 67 |
Widder D.V. — Advanced calculus | 62 |
Smirnov V.I. — Higher mathematics. Vol.1 | 278 |
Mimura M., Toda H. — Topology of Lie Groups, I and II | 255, 257 |
Buss S.R. — 3-D computer graphics. A mathematical introduction with openGL | 10, 80, 131, 346 |
Ward R.S., Wells R.O. — Twistor geometry and field theory | 9 |
Goldstein H., Poole C., Safko J. — Classical mechanics | 487, 492 |
Lee J.M. — Introduction to Topological Manifolds | 3, 51 |
Griffiths H. — Surfaces | 7, 73, 94, 106 |
Landsman N.P. — Mathematical topics between classical and quantum mechanics | 215 |
Folland J.B. — Real Analysis: Modern Techniques and Their Applications | 238 |
Artin M. — Algebra | 524 |
Hartman P. — Ordinary Differential Equations | 185 |
Hand L.N., Finch J.D. — Analytical Mechanics | 235, 429, See also invariant tori |
Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume III: Analysis | 267 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume II: Geometry | 619 |
Mendelson B. — Introduction to Topology | 201 |
Faltings G., Chai C. — Degeneration of Abelian Varieties | I.2.1, p.7 |
Gracia-Bondia J.M., Varilly J.C., Figueroa H. — Elements of Noncommutative Geometry | 291, 398, 527 |
Braselton J.P. — Maple by Example | 406 |
Sepanski R.M. — Compact Lie Groups | 1, 97 |
Hazewinkel M. (ed.) — Handbook of Algebra, Volume 4 | 343, 430 |
Lynch S. — Dynamical Systems with Applications Using Mathematica® | 184 |
Cabanes M., Enguehard M., Bollobas B. (Ed) — Representation Theory of Finite Reductive Groups (New Mathematical Monographs Series), Vol. 1 | 394 |
Kaczynski T., Mischaikow K.M. — Computational Homology | 380 |
Parshin A.N., Shafarevich I.R. — Algebraic Geometry III : Complex Algebraic Varieties. Algebraic Curves and Their Jacobians | 3 |
Godsil C., Royle G. — Algebraic Graph Theory | 15 |
Hall G.R., Lee — Continuous dynamical systems | 21 |
Sagan H. — Advanced Calculus of Real-Valued Functions of a Real Variable and Vector-Valued Functions of a Vector Variable | 490 |
Hogben L. — Handbook of Linear Algebra | 70—4 |
Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 68, 70 |
Shafarevich I.R., Kostrikin A.I. (ed.) — Basic Notions of Algebra | 143, 243 |
Devlin K.J. — Language of Mathematics: Making the Invisible Visible | 233—234 |
Reid M., Szendroi B. — Geometry and Topology | 119, 120, 139, 177, 178 |
Hatcher A. — Algebraic Topology | 34, 74, 102, 106, 227 |
Atiyah M. — Representation Theory of Lie Groups | 366 |
Gelfand I.M., Kapranov M.M., Zelevinsky A.V. — Discriminants, Resultants, and Multidimensional Determinants | 165 |
Jones G.A., Singerman D. — Complex Functions: An Algebraic and Geometric Viewpoint | 70 |
Coxeter H.S.M., Moser W.O.J. — Generators and Relations for Discrete Groups | 24, 25, 29, 43, 101—109, 117 |
Hirzebruch F. — Topological Methods in Algebraic Geometry | 50 |
Varadarajan V.S. — Lie Groups, Lie Algebras, and Their Representations | 43 |
Gallot S., Hulin D. — Riemannian Geometry | 1.2, 1.4, 1.10, 1.39, 1.89, 2.57. |
Parshin A.N., Shafarevich I.R. — Algebraic Geometry IV: Linear Algebraic Groups Invariant Theory | 22 |
Borel A., Mostow G.D. — Algebraic Groups and Discontinuous Subgroups: Proceedings | 68 |
Cooper J. — A Matlab Companion for Multivariable Calculus | 114 |
Petersen P. — Riemannian Geometry | 7, 17 |
Pickover C.A. — Mobius Strip: Dr. August Mobius's Marvelous Band in Mathematics, Games, Literature, Art, Technology, and Cosmology | 69, 79—82, 105, 128—130, 154 |
Jezierski J., Marzantowicz W. — Homotopy Methods in Topological Fixed and Periodic Points Theory | 161 |
Yang K. — Complex Algebraic Geometry: An Introduction to Curves and Surfaces | 126 |
Kappraff J. — Beyond Measure: A Guided Tour through Nature, Myth, and Number | 268—271, 280—281, 531, 556 |
Bridges Th.J., Furter J.E. — Singularity Theory and Equivariant Symplectic Maps | 143 |
Lima E.L. — Fundamental Groups and Covering Spaces | 10, 28 |
Dugunji J. — Topology | 7 |
Bollobas B. — Modern Graph Theory | 155 |
Koblitz N. — A course in number theory and cryptography | 172—173 |
Lang S. — Diophantine Geometry | 37, 38, 71, 233—239 (see also “Abelian varietiesv, “Semiabelian varieties”) |
Montiel S., Ros A. — Curves and Surfaces | 37, 142, 284 |
Boothby W.M. — An introduction to differentiable manifolds and riemannian geometry | 7, 57, 80, 92 |
Ratcliffe J.G. — Foundations of Hyperbolic Manifolds | 340, 343 |
Jost J., Simha R.T. — Compact Riemann Surfaces: An Introduction to Contemporary Mathematics | 2, 13, 21, 33, 48, 61, 75, 154, 163, 262—264 |
Dupont J.L. — Curvature and Characteristic Classes | 117 |
Stillwell J. — Yearning for the Impossible: The Surprising Truths of Mathematics | see 2-torus 187 |
Wapner L. — The Pea and the Sun: A Mathematical Paradox | 55, 66 |
Devaney R.L. — An introduction to chaotic dynamical systems | 171, 190 |
Finch S.R. — Mathematical constants | 326, 407 |
Mitsumi S., Sturmfels B., Takayama N. — Groebner Deformations of Hypergeometric Differential Equations, Algorithms and Computation in Mathematics, Volume 6 | 66 |
Steenrod N.E. — The Topology of Fibre Bundles | 4, 17 |
Mumford D., Wright D., Series C. — Indra's Pearls: The Vision of Felix Klein | 23—26, 82—85, 280—282 |
Jones J.A., Jones J.M. — Elementary Number Theory | 236 |
Vick J.W. — Homology theory. An introduction to algebraic topology | 41 |
Bamberg P.G. — A Course in Mathematics for Students of Physics, Vol. 2 | 513 |
Spivak M. — Calculus | 365 |
Besse A.L. — Einstein Manifolds | 180, 191, 226, 281, 286, 287 |
Stewart I., Tall D. — Algebraic Number Theory and Fermat's Last Theorem | 133 |
Eschrig H. — The Fundamentals of Density Functional Theory | 18, 56, 130, 131 |
Chaikin P.M., Lubensky T.C. — Principles of condensed matter physics | 626 |
Brown K.S. — Buildings | 202 |
Rudin W. — Functional analysis | 193 |
Van der Put M., Singer M.F. — Galois Theory of Linear Differential Equations | 371 |
Kobayashi S., Nomizu K. — Foundations of Differential Geometry, Volume 2 | I-62 |
Waterhouse W.C. — Introduction to Affine Group Schemes, Vol. 66 | 55 |
Brickell F., Clark R.S. — Differentiable Manifolds | 20 |
Steenrod N.E. — First Concepts of Topology | 25 |
Giamarchi T. — Quantum Physics in One Dimension | 96 |
Coxeter H.S.M. — Introduction to Geometry | 132—133, 356, 374 |
Lerner K.L., Lerner B.W. — The gale encyclopedia of science (Vol. 6) | 6:4051 |
Dittrich T. (ed.), Hanggi P. (ed.), Ingold G.-L. (ed,) — Quantum transport and dissipation | 291, 298, 303, 321, 348 |
Carter J.S. — How Surfaces Intersect in Space: A Friendly Introduction to Topology | 84, 88, 134 |
Hale J.K., Kocak H. — Dynamics and Bifurcations | 148, 149 |
Ablowitz M.J., Segur H. — Solitons and the Inverse Scattering Transform | 147 |
Davey W.P. — A study of crystal structure and its applications | 191, 200 |
Carmo M.P. — Differential geometry of curves and surfaces | 61 |
Mukhi S., Mukunda N. — Introduction to Topology, Differential Geometry and Group Theory for Physicists | 18 |
Fishbane P.M. — Physics For Scientists and Engineers with Modern Physics | 831 |
Guggenheimer H.W. — Applicable Geometry | 125 |
Gallier J. — Geometric Methods and Applications: For Computer Science and Engineering | 490 |
Dieudonne J.A. — Treatise on Analysis, Vol. 2 | 14.2 |
Borel A. — Linear algebraic groups | 8.5 |
Thirring W.E. — Classical Mathematical Physics: Dynamical Systems and Field Theories | 14 |
Simon B. — Representations of Finite and Compact Groups | 165 |
Berard P.H. — Spectral Geometry | 23, 100 |
Hilborn R.C. — Chaos and nonlinear dynamics | 135—136, 213—215, 287—289, 291—293 |
Thirring W.E. — Course in Mathematical Physics: Classical Dynamical System, Vol. 1 by Walter E. Thirring | 11 |
Zeldovich Ya.B., Yaglom I.M. — Higher Math for Beginners | 275 |
Sack J.R., Urrutia J. (Ed) — Handbook of Computational Geometry | 250 |
Brocker Th., Dieck T.T. — Representations of Compact Lie Groups | 3, 25, 38 |
Held A. (ed.) — General relativity and gravitation. 100 years after the birth of Albert Einstein (volume 1) | 190 |
Libai A., Simmonds J.G. — The Nonlinear Theory of Elastic Shells | 345 |
Intriligator M.D., Arrow K.J. — Handbook of Mathematical Economics (vol. 1) | 16 |
Strichartz R.S. — The way of analysis | 601 |
Sanders J.A., Verhulst F. — Averaging methods in nonlinear dynamical systems | 84, 144, 146, 149, 154, 162, 232, 234 |
Morgan F. — Riemannian geometry, a beginners guide | 51 |
Fulling S. — Aspects of Quantum Field Theory in Curved Spacetime | 135, 140—141 |
Manin Y.I. — Cubic Forms: Algebra, Geometry, Arithmetic | 166 |
Kühnel W., Hunt B. — Differential Geometry: Curves - Surfaces - Manifolds | 205, 220, 222 |
Adams C.C. — The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots | 71 |
Spivak M. — A Comprehensive Introduction to Differential Geometry (Vol.1) | 7, 8 |
Held A. (ed.) — General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein, Vol. 2 | 190 |
Munkres J.R. — Analysis on manifolds | 151 |
Coxeter H.S.M. — Regular Polytopes | 10, 11 (see also “Ring”) |
Guggenheimer H.W. — Differential Geometry | 281, 287 |
Seppala M. — Geometry of Riemann surfaces and Teichmuller spaces | 71 |
Koblitz N., Wu Y.-H., Menezes A.J. — Algebraic Aspects of Cryptography | 122 |
Zieschang H. — Surfaces and Planar Discontinuous Groups | 72 |
Fomenko À.Ò., Mishehenko A.S. — A Short Course in Differential Geometry and Topology | 72 |
Barnette D. — Map Coloring Polyhedra and the Four Color Problem | 37ff |
Berger M., Cole M. (translator) — Geometry I (Universitext) | 1.7.7.4, 18.8.6, 18.11.20, 10.12.1, 10.13.22 |
Abdullaev S.S. — Construction of Mappings for Hamiltonian Systems and Their Applications | 7 |
Munkres J. — Topology | 339 |
Collins P.D., Squires E.J., Martin A.D. — Particle Physics and Cosmology | 300, 336, 360, 363, 366 |
Jeffrey A., Taniuti T. — Mathematics in Science and Engineering: volume 9. Non-linear wave propagation | 319 |
Grünbaum B. — Convex Polytopes | 207, 253 |
Kenzel W., Reents G., Clajus M. — Physics by Computer | 195 |
Aigner M. — Combinatorial Theory | 355 |
Hu S.-T. — Elements of general topology | 47, 124 |
Tamura I. — Topology of lie groups, I and II | 7 |
Springer T.A. — Linear Algebraic Groups | 43 |
Paoluzzi A. — Geometric Programming for Computer Aided Design by Alberto Paoluzzi: Book Cover * o Table of Contents Read a Sample Chapter Geometric Programming for Computer Aided Design | 82 |
Audin M. — Torus Actions on Symplectic Manifolds | 11, 18, 33, 47, 74 |
Kuttler K. — Calculus, Applications and Theory | 583 |
Greenberg M.J., Harper J.R. — Algebraic Topology | 18, 50, 68, 102, 146, 147, 172, 2 |
Collins P.D.B., Martin A.D., Squires E.J. — Particle Physics and Cosmology | 300, 336, 360, 363, 366 |
Franson D. — 2D Artwork and 3D Modeling for Game Artist | 654 |
Wawrzynczyk A. — Group representations and special functions | 31 |
Boroczky K. — Finite Packing and Covering | 354 |
Clemens C.H. — Scrapbook of Complex Curve Theory | 43 |
Kreyszig E. — Advanced engineering mathematics | 454 |
Mcmullen P., Schulte E. — Abstract Regular Polytopes | 150 |
Rosenfeld B. — Geometry of Lie Groups | 280 |
Ore O., Wilson R.J. — Graphs and Their Uses | 133 |
Oprea J. — Differential Geometry and Its Applications | 73, 120 |
Schlichenmaier M. — An Introduction to Riemann Surfaces, Algebraic Curves and Moduli Spaces | 12, 18, 33, 42, 48, 71 |
Alloin D., Johnson R., Lira P. — Physics of Active Galactic Nuclei at all Scales | 33, 115, 116 |
Grasman J. — Asymptotic methods for relaxation oscillations and applications | 147, 192 |
Koblitz N., Menezes A.J. (Contributor), Wu Y.-H. (Contributor) — Algebraic Aspects of Cryptography | 122 |
Cantu-Paz E. — Efficient and accurate parallel genetic algorithms | 128 |
Boothby W.M. — An Introduction to Differentiable Manifolds and Riemannian Geometry | 7, 57, 80, 92 |
Moise E.E. — Geometric topology in dimensions 2 and 3 | 151 |
Greene B. — The elegant univerce | 199—200, 200 |
Ohtsuki T. — Quantum invariants: a study of knot, 3-manifolds, and their sets | 212 |
Sarfraz M. — Advances in geometric modeling | 72, 252 |
Rosenfeld B.A. (Author), Shenitzer A. (Translator), Grant H. (Assistant) — A history of non-Euclidean geometry: evolution of the concept of a geometric space | 111, 302, 303, 326 |
Nash C. — Differential Topology and Quantum Field Theory | 147, 151, 311, 356—358 |
Bishop R.L., Crittenden R.J. — Geometry of manifolds | 5 |
Farin G. — Curves and surfaces for computer aided geometric design | 270 |
Morrow J., Kodaira K. — Complex Manifolds | 13, 21—23 |
Friedman R. — Algebraic Surfaces and Holomorphic Vector Bundles | 132, 192 |
Drmota M., Tichy R.F. — Sequences, Discrepancies and Applications | 1 |
Gatermann K. — Computer Algebra Methods for Equivariant Dynamical Systems | 69 |
Fordy A.P., Wood J.C. (eds.) — Harmonic maps and integrable systems | 49 |
Liu Y. — Introduction to combinatorial maps | 31 |
Mullin T. — The nature of chaos | xii, 38—41 |
Steenrod N. — The topology of fiber bundles | 4, 17 |
Roads Ñ.(ed.) — Musical signal processing | 210 |
Astfalk G. — Applications on Advanced Architecture Computers | 41, 181, 182, 258 |
Browder A. — Mathematical Analysis: An Introduction | 257 |
Milnor J., Husemoller D. — Symmetric Bilinear Forms | 16, 101 |
Press W.H., Teukolsky S.A., Vetterling W.T. — Numerical recipes in Fortran 90 | 297f., 304 |
Press W.H., Teukolsky S.A., Vetterling W.T. — Numerical recipes in Fortran 90 | 297f., 304 |
Onishchik A.L. (ed.) — Lie Groups and Lie Algebras | 7 |
Grosche C. — Path integrals, hyperbolic spaces, and Selberg trace formulae | 47 |
Gross J.L., Tucker T.W. — Topological Graph Theory (Wiley Series in Discrete Mathematics and Optimization) | 30, 276 |
Cairns S.S. — Introductory topology | 25 |
Aigner M. — Graph theory | 17 |
Brickell F., Clark R.S. — Differentiable manifolds | 20 |
Struik D.J. — Lectures on Analytic and Projective Geometry | 76 |
Hu S.T. — Introduction to general topology | 47 |
Hayes D.F. (ed.), Shubin T. (ed.) — Mathematical Adventures for Students and Amateurs | 196—199, 202, 206—208, 214 |
Koblitz N. — Introduction to Elliptic Curves and Modular Forms | 14, 15, 21, 24 |
Flatto L. — Poncelet's Theorem | 67 |
Skorobogatov A. — Torsors and Rational Points | 9 |
Selig J.M. — Introductory robotics | 65, 134 |
Duistermaat J.J, Kolk J.A.C. — Distributions: theory and applications | 174, 175 |
Massey W.S. — A basic course in algebraic topology | 5 |
Kinsey L.C. — Topology of surfaces | 48 |
Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 8, 117 |
Cohn P.M. — Lie Groups | 8f., 39 |
Coxeter H. — Regular polytopes | 10, 11 (see also Ring) |
Tietze H. — Famous Problems of Mathematics Solved and Unsolved | 29, 31, 37, 42, 71, 79, 110, 233 |
Spivak M. — A Comprehensive Introduction to Differential Geometry. Volume 3 | 342 |
Spanier E.H. — Algebraic Topology | 148 |
Aleksandrov P.S. — Combinatorial topology. Volume 1 | 11, 21, 22, 81 |
Onishchik A.L. (ed.) — Lie Groups and Lie Algebras (volume 1) | 7 |
Marathe K.B., Martucci G. — The mathematical foundations of gauge theories | 7 |
Hille E. — Methods in classical and functional analysis | 172 |
Dym H., McKean H.P. — Fourier Series and Integrals | 81, 84—85 |
van Lint J.H., Wilson R.M. — Course in Combinatorics | 434 |
Kobayashi S., Nomizu K. — Foundations of Differential Geometry, Volume 1 | 62 |
Munkres J.R. — Topology: A First Course | 134, 333 |
Borovik A.V. — Mathematics under the microscope | 236 |
Massey W.S. — Algebraic Topology: an introduction | 6—7 |
Gorbatsevich V.V., Vinberg E.B., Onishchik A.L. — Foundations of Lie theory and Lie transformation groups | 7 |
Fink K. — A brief history of mathematics | 213 |
Goodman A.W. — The Pleasures of Math | 85, 86, 89 (prob. 10), 100 |
Zuo K. — Representations Of Fundamental Groups Of Algebraic Varieties | 11 |
Christe P., Henkel M. — Introduction to conformal invariance and its applications to critical phenomena | 137 |
Gibbons A. — Algorithmic graph theory | 67 |
Gibbons A. — Algorithmic graph theory | 67 |
Chaikin P., Lubensky T. — Principles of condensed matter physics | 626 |
Shick P.L. — Topology: Point-set and geometric | 101, 104, 177, 185, 187, 197, 239, 255 |
Silverman J. — The arithmetic of dynamical systems | 33 |
Audichya A. — Mathematics: Marvels and milestones | 32, 42 |
Ercolani N.M., Gabitov I.R., Levermore C.D. — Singular limits of dispersive waves | 105, 216, 274, 276, 280, 300, 302, 310, 312 |
Haken H. — Information and Self-Organization | 17 |
Hsiung C.-C. — A first course in differential geometry | 4, 161 |
Dunkl C.F., Xu Y. — Orthogonal Polynomials of Several Variables | 313 |
Penney D.E. — Perspectives in Mathematics | 30, 116 |
Lane S.M. — Mathematics, form and function | 135, 232—233, 242 |
Lemm J.M. — Mathematical elasticity. Theory of shells | 66, 133, 292 |
Wagon S. — The Banach-Tarski Paradox | 178 |
Mott J.L., Kandel A., Baker T.P. — Discrete Mathematics For Computer Scientists And Mathematicians | 607 |
Mott J., Kandel A., Baker T. — Discrete mathematics for computer scientists and mathematicians | 607 |
Frankel T. — The geometry of physics: an introduction | 16 |
Ðàäèîðåëåéíàÿ ñòàíöèÿ òèïà Ð-414. Òåõíè÷åñêîå îïèñàíèå. Êíèãà âòîðàÿ | 13, 21—23 |
Hartshorne R. — Algebraic Geometry | 328, 442, 447 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of mathematics. Volume III. Analysis | 267 |
Henkel M. — Conformal Invariance and Critical Phenomena | 205 |
Koonin S.E., Meredith D.C. — Computational Physics-Fortran Version | 41 |
Lasota A., Mackey M.C. — Probabilistic Properties of Deterministic Systems | 162 |
Apostol T.M. — Calculus (Volume 2): Multi-Variable Calculus and Linear Algebra with Applications | 376 |
Greiner W. — Classical mechanics. Systems of particles and hamiltonian dynamics | 464 |
Zeidler E. — Oxford User's Guide to Mathematics | 13, 350, 488, 577, 589, 805 |
Rektorys K. — Survey of Applicable Mathematics.Volume 2. | I 111, I 634, II 279, II 280 |
Courant R., Robbins H. — What Is Mathematics?: An Elementary Approach to Ideas and Methods | 248 |
Gullberg J. — Mathematics: from the birth of numbers | 405 |
Haile J.M. — Molecular Dyanmics Simualtion: Elementary Methods | 47, 49—50, 98 |
Haile J.M. — Molecular Dyanmics Simualtion: Elementary Methods | 47, 49—50, 98 |
Fritzsche K., Grauert H. — From Holomorphic Functions To Complex Manifolds | 207, 225, 348 |
Kraitchik M. — Mathematical Recreations | 145, 211 |
Von Grudzinski O. — Quasihomogeneous distributions | 9 |
Spivak M. — Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus | 115 |
Franklin P. — Differential and integral calculus | 360 |
Jablan S., Sazdanovic R. — LinKnot: knot theory by computer | 9, 22 |
Greenberg M.J., Harper J.R. — Algebraic topology: a first course | 18, 50, 68, 102, 146, 147, 172 |
Yates R.C. — Curves and Their Properties | 9, 204 |
Greub W., Halperin S., Vanstone R. — Connections, curvature, and cohomology. Volume 1 | 23, 41, 215, 228, 230, 248 |
Courant R. — Differential and Integral Calculus, Vol. 1 | 291 |
Kushkuley A., Balanov Z. — Geometric Methods in Degree Theory for Equivariant Maps | 14 |
Fayolle G., Iasnogorodski R., Malyshev V. — Random Walks in the Quarter-Plane: Algebraic Methods, Boundary Value Problems and Applications (Stochastic Modelling and Applied Probability) | 31 |
Dym H., McKean H. — Fourier Series and Integrals (Probability & Mathematical Statistics Monograph) | 81, 84—85 |
Stillwell J. — Mathematics and its history | 23, 152, 213, 226, 229, 302—306, 311 |
Ruelle D. — Elements of Differentiable Dynamics and Bifurcation Theory | 3—4, 83 |
Ivanov O.A. — Easy as Pi?: An Introduction to Higher Mathematics | 94 |
Frankel T. — The geometry of physics: An introduction | 16 |
Lord E., Wilson C. — The Mathematical Description of Shape and Form (Mathematics and Its Applications) | 39 |
Coutinho S. — The mathematics of ciphers: number theory and RSA cryptography | 112 |
Klingenberg W. — A Course in Differential Geometry (Graduate Texts in Mathematics) | 40, 126 |
Zorich V.A., Cooke R. — Mathematical analysis II | 167 |
Zorich V. — Mathematical Analysis | 167 |
Falconer K. — Fractal geometry: mathematical foundations and applications | 198—201 |
Collins P.D.B., Martin A.D., Squires E.J. — Particle Physics and Cosmology | 300, 336, 360, 363, 366 |
Higgins P. — Mathematics for the curious | 133—135 |
Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 8, 117 |
Mac Lane S. — Mathematics: Form and Function | 135, 232—233, 242 |
Thirring W., Harrell E.M. — Classical mathematical physics. Dynamical systems and field theory | 14 |
Ãîâîðóõèí Â., Öèáóëèí Á. — Êîìïüþòåð â ìàòåìàòè÷åñêîì èññëåäîâàíèè | 165 |
Ãîâîðóõèí Â., Öèáóëèí Á. — Êîìïüþòåð â ìàòåìàòè÷åñêîì èññëåäîâàíèè - Maple, Matlab, LaTex | 165 |
Odifreddi P., Sangalli A., Dyson F. — The Mathematical Century: The 30 Greatest Problems of the Last 100 Years | 79, 152, 173 |
Isham C. — Modern Differential Geometry for Physicists | 67 |
Nash C., Sen S. — Topology and geometry for physicists | 30—33 |
Alloin D., Johnson R., Lira P. — Physics of Active Galactic Nuclei at all Scales (Lecture Notes in Physics) | 33, 115, 116 |
Jorgensen P.E.T. — Analysis and Probability: Wavelets, Signals, Fractals | 25, 204, 251, see also "one-torus" |
Krushkal` S.L., Apanasov B.N. — Kleinian Groups and Uniformization in Examples and Problems (Translations of Mathematical Monographs) | 122 |