|
 |
Àâòîðèçàöèÿ |
|
 |
Ïîèñê ïî óêàçàòåëÿì |
|
 |
|
 |
|
 |
 |
|
 |
|
Reid M., Szendroi B. — Geometry and Topology |
|
 |
Ïðåäìåòíûé óêàçàòåëü |
Abstract group 169
Affine frame 69 71
Affine geometry 62—72 95
Affine group Aff(n) 102 161 170
Affine linear dependence 68 71
Affine linear map 8—9 27 68—69
Affine linear subspace 29—30 62—68 70—72 91
Affine space 62 63 68 95 170
Affine space in projective space 82
Affine span 62 66—67
Affine transformation xvi 8—9 68—70 91
Algebraic topology xv 113 130
Algebraically closed field 136—137
angle 1 5—6 27 62 69 95
Angle bisector 23 25
Angle of rotation 15—18
Angle sum 19—20 34 40 51—56
Angle, signed 6
Angular defect, excess see angle sum
Area 40—41 51—56
Associative law 28 32 94 169
Axiomatic projective geometry 86—88 164 168 177
Ball 58 109 138 146
Based loop 131—133 136—137
Basis for a topology 124—126
Bilinear form see Euclidean inner product Lorentz 162 183—185
Bolyai's letter 166
Centre of rotation 15
Centroid 21 69—71
Circumcentre 21 22
Closed see compact versus closed 58 75 108 111 113 138 148
Closed and bounded 115—129 146
Closed map 129—130
Closed, diagonal 127—128
Cofinite topology 108 111 127
Commutative law 15 17 28 32
Compact see maximal compact sequentially xv 75 115—117 121 133—138 143 146 152
Compact Lie group 146 147 160
Compact surface 119 177—178
Compact versus closed 128—129
Compactification 75
Complex number 12 27 136 188
Composite of maps 26—33
Composite of reflections 16 29—31 33 58
Composite of rotation and glide 33
Composite of rotation and reflection 31
Composite of rotations 27 33
Composite of translations 27
Congruent triangles 19 25 55
Connected see path connected simply 113—115 117 138 148 149 152 153
Connected component 114—115 122 144 148 149 153 160 161
Connected Lie group 160
continuous xv 5 68 91 100 142—144 148 149
Continuous, family of paths 131—132
Contractible loop 130—133 136 141
Coordinate changes xiv
Coordinate frame xiv 1
Coordinate geometry xiii xvi 168
Coordinate system xiv 4
Coventry market 92—93
Cross-ratio 79—81 90 106
Curvature 34 40 49 93 167 177 178 182
Desargues' theorem 82—84 88 90
DIMENSION 66 67 70 76 144 145 160
Dimension of a Lie group 144—146 148 161
Dimension of intersection 67 69 72—73 77 81 83 88
Direct motion 10 15 17 148 151—152
Disc 111 122 130 133 139
Discrete topology 108 110 127 143
Distance see Euclidean distance hyperbolic metric shortest spherical
Distance function 1 2 4 6 7 35 62 95 180 181 183
Duality 85—86 90
Einstein's, field equations see general relativity 93
Einstein's, relativity principle see special relativity 174
Electron xvi 143 154—159 175
Empty set 68 70 72 73 76 108 124
Erlangen program xiv—xv 95—96 112 170—171
Euclid's postulates see parallel postulate 165—167
Euclidean angle 45
Euclidean distance 1 2 4 116 151
Euclidean frame 1 14 25 40 145
Euclidean geometry 4 19 25 34 45 47 69 95 166
Euclidean group Eucl(n) xvi 159 161
Euclidean inner product 2 5 9 24 43 58 184 185 187
Euclidean line 4
Euclidean motion see motion 9 10 14 24 25 47 92 144
Euclidean plane 6 33
Euclidean space 1 4—10 29 35 180
Euclidean translation 19
Euler number 140 177
Family of paths 131
Feuerbach circle 23
Frame see affine frame coordinate Euclidean orthogonal projective spherical
Frame of reference see projective frame
Fundamental group xv 113 130 159
Fundamental theorem of algebra 136
Galilean group 93 172—173
General linear group GL(n) xv 95 99 101 105 124 143 145 147 148 160 161 171
General relativity 93 167 176 178
Generators 29 100—101 103 106
Genus 120 139 177
Geodesic see shortest distance
Glide 15—17 24 31—33 40 47 98
Glide reflection see glide
Glueing see quotient topology
Great circle see spherical line
Group see abstract group fundamental Galilean general Lie Lorentz Poincare projective reflection rotation spinor topological transformation unitary
Half-turn 12 32
Hausdorff 109 110 127—130 139 152
Heine — Borel theorem 116
Hermitian form 153 156 160 163 188
Homeomorphism 107 111 113 117 119—121 130 132 134—136 138 139 147 149 152 153 160 177
Homeomorphism criterion 111 130 142 152
Homeomorphism problem xv 113
Homogeneous space 169—170
Hyperbolic distance 43 46 58
Hyperbolic geometry 4 20 34 36 41—167
Hyperbolic line 43 46—50 60
Hyperbolic motion 46 144
Hyperbolic plane 39 47—49 58—61 180
Hyperbolic sine rule 59
Hyperbolic space 35 42 51 104
Hyperbolic translation 47 58 61
Hyperbolic triangle 44 51 58 59
Hyperbolic trig 35 44—45
Hyperplane 29 30 66 67 76 78 81 82 89 96
Hyperplane at infinity 88
Ideal point see infinity point
Ideal triangle 51 53—56
Incentre 23 25
Incidence of lines 34 40 47 69 84
Indiscrete topology 108 111 139
Infinity, hyperplane at 72 73 76 82 90
Infinity, point at 48—49 51 53 55 59 73 75 76 79
Intersection see dimension of intersection 108
Intrinsic curvature 34 40 177
Intrinsic distance 40
| Intrinsic unit 34 49
Isometry see motion preserves 4 6 112 181
Klein bottle xiv 139
Length of path 5
Lie group see compact Lie group 142—164 169
Line 4 65
Line, hyperbolic 44
Line, segment 3 65
Line, spherical 35
Loop 107—137 140 159
Lorentz basis 44 55 185 186 188 189
Lorentz complement 48 186
Lorentz dot product 43 184 186
Lorentz form 42 47 184 186 189
Lorentz group 93 159 161
Lorentz matrix 42 46—47 161 188 189
Lorentz norm 44 184 186
Lorentz orthogonal matrix 187
Lorentz reflection 47
Lorentz space 42 46 188
Lorentz transformation 47 54 92 144
Lorentz translation see hyperbolic Lorentz
Lorentz, orthogonal 44
Lorentz, pseudometric 42 58 174
Maximal compact subgroup 160
Mercator's projection 139 164 179
Metric 180—182
Metric geometry 64 177
Metric space 1 4 38 180—182
Metric topology 109 125 143 152
Minimum over paths 5 180
Moebius strip xiv 107 118—119 122 139
Motion xiv 1 6 7 9—11 14—19 24—26 28—34 38—40 46 47 58 61 93 95 97 98 100 103 105 106 144 149 151 152 154 158 161
Mousetrap topology 122—123
Musee Grevin 103 105
Newtonian dynamics 93 161 172—173
Non-Euclidean geometry 34—61 167
Normal form of a matrix 10—13 18 29 98—99 148 189
Open set 108—111 113—115 117 118 121 125 143 148
Opposite motion 10 15 17 148
Orthocentre 22—23
Orthogonal see Lorentz -
Orthogonal axes 1
Orthogonal complement 13 47 145 171 185
Orthogonal direct sum 151
Orthogonal frame 39
Orthogonal group O(n) 144—152
Orthogonal line 158
Orthogonal magnetic field 154 158
Orthogonal matrix 7 9—13 24 29 39 99 144 146—149 159 187
Orthogonal plane 29
Orthogonal transformation 9 92 99 187
Orthogonal vector 5 29 37 151 162 185
Pappus' theorem 84—85 88 90
Parallel axes 31
Parallel hyperplanes 17 64 66 67
Parallel lines 15—17 20—23 27 34 40 49 62 68 70 73 82 166
Parallel mirrors 103
Parallel postulate 20 49 60 166
Parallel sides 31
Parallel vector 16 96
Path see length of path minimum 114 131 159
Path, connected 114 120 132 141 149
Perpendicular bisector 16 21 22 24 29 30 57
Perspective 73 74 81—83 88 90
Physics xv xvi 93 160 172—179
Poincare group 173—176
Point at infinity see infinity point
Preserves distances 6—7 24 39 181
Principal homogeneous space see torsor
Pringle's potato chip 58 178
Product topology 126—127 139 143
Profinite topology 125 126
Projective frame 78 79 90 106 146
Projective geometry 72—91
Projective linear group PGL(n) 77 95 105 106 144 146 171
Projective linear subspace 73—77
Punctured disc D* 120 130 133 136
Quadratic form 5 9 42 123 150 151 183
Quaternions 149—152
Quotient topology 110 117—119 121—125 139—140 144 152
Reflection 1 11 15—17 24 27—30 33 34 40 58 103 105
Reflection group 103—105
Reflection matrix 7 10 24 42 144
Relativity see special relativity general 161
Rigid body motion see motion
Rotary reflection 33 40
Rotation 1 11 15—18 24 25 27 29 31—34 39 40 47 97 100 103 142 143 149—152 154 158 161
Rotation group 152
Rotation matrix 7 10 42 144
Rubber-sheet geometry xiv 107
Sequentially compact 115—116 138
Shortest distance see minimum over paths 4 5 40 46 58
Similar triangles 21—23
Simplex of reference see projective frame
Simply connected 130 132 146 160
Spacetime 93 172—176 178 179
Special linear group SL(n) 159 175
Special orthogonal group SO(n) 149 152
Special relativity xv 93 144 173—174 178
Special unitary group SU(n) 153 176
Sphere 35 36 39 40 43 56 58 113 180 181
Sphere 57 58 116 121 122 145 151
Spherical disc 56
Spherical distance 36—38 40 56 116
Spherical frame 34 40
Spherical geometry 4 20 34—41 45 56 57 164 167 182
Spherical line 39 40
Spherical motion 38 39
Spherical triangle 37—38 40 41 57 182
Spherical trig 37 167
Spin 143 154 155
Spinor group Spin(n) 153 159
Standard model 176
Subspace topology 117 121 128 144 147 152
Symmetry 92—95 160 164 169 173—176
Topological group 143—144 159
Topological property xv 113 127 131 136 167
topology 94 107—141 143
Topology of 152
Topology of 90 121 139
Topology of SO(3) 142 143 149
Torsor 169–170
Torus 119 120 139 177 178
Transformation group 26—33 92 94—96 101 104 112 142—163
Translation 1 15—19 25 29 31—33 39 68 97 98 100—103 106 158 161
Translation map 125
Translation subgroup 101 105
Translation vector 15 24 27 31
Triangle inequality 1—5 38 45 180
Trichotomy 177—179
Ultraparallel lines 48—51 59 61
UMP see universal mapping property
Unitary group 153 176
Unitary matrix 153 158 188—189
Unitary representation 175
Universal mapping property 118 139 152
Winding number xv 107 130—137
|
|
 |
Ðåêëàìà |
 |
|
|