|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Nash C., Sen S. — Topology and geometry for physicists |
|
|
Ïðåäìåòíûé óêàçàòåëü |
-planes 285—289
-planes and anti-self-dual connections 288—289
-planes and complex projective space 287—288
-planes 285—288
Affine transformation law 178 181
Algebraic geometry 289 294
Almost complex structures 170—171
Almost Hamiltonian structures 165—167 171
Anti-self-duality 259 285—297
Anti-self-duality and -planes 286 288—289
Anti-self-duality and holomorphic structure 292—297
Anti-self-duality, definition of 259
Atiyah — Singer index theorem 220 280
Atiyah — Singer index theorem and instantons 280
Atlas 26 36—37
Betti number 91
Bianchi identities 182—183 190 192 257
Biholomorphic 221
Bogomolny equation 298—301
Bohm — Aharanov effect 301—302
Boundary 86
Boundary operator 84 121—123
Brouwer fixed point theorem 6
Calculus on manifolds 37—48
Canonical transformations 169
Cap product 139
Cauchy's residue theorem 1—2
Chain 84
Characteristic classes see "Names of specific characteristic classes"
Characteristic classes in general 200—225
Characteristic classes in terms of curvature and invariant polynomials 206—211
Characteristic classes of a manifold 219
Characteristic classes, calculation of 213—217
Characteristic classes, formulae obeyed by 219—221
Characteristic classes, universal 221
Characteristic numbers of a manifold 219
Chart 26 36—37
Chern character 220
Chern classes 204—210 213—215 217—220
Chern classes in terms of curvature 207—210
Christoffel symbol 187
Closed form 123
Closed set 13—15 17
Cohomology 120—139
Cohomology and de Rham cohomology 122—138
Cohomology and non-compactness 136—137
Cohomology and non-orientability 136—137
Cohomology groups 120
Cohomology groups for 136
Cohomology groups for 136
Cohomology groups, calculation of 127—136
Cohomology groups, de Rham 123—139
Cohomology groupsfor a general manifold 136
Cohomology versus homology 138—139
Cohomology with real coefficients 121
Compact set 16—19
Compactness 16—19 22—23
Compactness, topological invariance of 22—23
Complex orthogonal group 285—288
Complex projective space 138 217 287—288
Complex projective space and -planes 287—288
Complex projective space and spin structures 217
Complex structures 170—171 291
Conformal invariance 259—260
Conformal invariance of the * operation 260
Conformal invariance of the action S 260
Connected set 19—20
Connectedness 19—20 22—23 53
Connectedness, path 53
Connectedness, topological invariance of 22—23
Connection form 177—178
Connections 174—198 256—303
Connections in the tangent bundle 184—194
Connections, Levi — Civita 191—194
Connections, Maxwell 196—198 297—298
Connections, physical significance of 301—302
Connections, Yang — Mills 194—196 256—303
Continuity 9—12
Continuous deformation 9 25
Contractibility of Gl(n,C) to U(n) 163—164
Contractibility of Gl(n,R) to O(n) 162
Contractibility to a maximal compact subgroup 163
Contractible manifold 125—127
Contractible manifold, definition of 125
Contravariant vector 39—40
Cotangent bundle 150 166
Covariant derivative 174 179—180 183—187
Covariant exterior derivative 181—182
Covariant vector 39—40 42
Covering space 254
Critical point 227
Cup product 137—138
Cup product and ring structure of H*(M;R) 138
Curvature 179—181
Curvature and lack of commutativity of covariant differentiation 179—180
Curvature tensor 180—181 188
Curvature, dual of 183
CYCLE 86
defects 244—255
Defects, combination rule for line defects 249
Defects, crossing of line defects 251—253
Defects, definition of 246
Defects, stability of 246
Deformation 1
Deformation retract 64 135
Dense set 16
Diffeomorphism 49 221
Differentiable structures 49—50
Differentiable structures, different 49
Differential 40
Differential form see "r-form"
Differential geometry 25—50 171—225
DIMENSION 23—24
Dimension, topological invariance of for 23—24
Dimension, topological invariance of for a manifold 26
disconnected set 20
Dual 39—40
Dual basis 40
Dual of a linear map 39—40
Dual of a vector space 39
Dynamical system 8
Equivalence of T(M) and T*(M) 163
Euler class 204 210—211 215—217 220
Euler class and Pfaffian 211
Euler Lagrange equations 257
Euler — Poincare characteristic 140
Euler — Poincare formula 106
Exact form 123
Exact sequences 99 123
Exact sequences of a fibre bundle 253
Exact sequences of homology groups 99
Exact sequences of homotopy groups 115—116
Exact sequences, application of exact homology sequence 100—104
Exact sequences, theorem for four groups 100
Excision theorem 98
Exterior algebra 42
Exterior derivative 41—43 121—123
Fibre bundle 140—225
Fibre bundle, base space of 142
Fibre bundle, classification of 200—212
Fibre bundle, contraction of the base space of 159—165
Fibre bundle, definition of 142
Fibre bundle, fibre of 142
Fibre bundle, list of 151
Fibre bundle, local triviality of 142
Fibre bundle, principal 152—156 261
Fibre bundle, projection of 142
Fibre bundle, reconstruction from transition functions 144—147
Fibre bundle, reduction of the group of 159—165
Fibre bundle, section of 152—156
| Fibre bundle, structure group of 142
Fibre bundle, total space of 142
Fibre bundle, transition functions of 142
Fibre bundle, triviality of 152—156
Fibre bundle, triviality of over a contractible base 161
Finitely generated group 90
Fixed points 4—8
Fixed points of an operator 6—8
Fixed points of the disc 4—7
Flow of a vector field 169
Freely generated group 90
Functions 9—12
Functions with discontinuity 10—11
Functions, continuous 9
Fundamental group 51—78
Fundamental group of 71
Fundamental group of 71
Fundamental group of 72
Fundamental group of a product 77
Fundamental group of Klein bottle 76
Fundamental group of Moebius band 72
Fundamental group of projective plane 75
Fundamental group of torus 74
Fundamental group, definition of 56
Fundamental group, dependence on base point 58
Fundamental group, non-abelian nature of 66
Fundamental group, the calculating theorem 68
Fundamental theorem of algebra 3
G-structures 163—171
G-structures, topological restrictions to existence of 164 167—171
Gauge potential 178 299 see
Gauge potential, static 299
Gauss — Bonnet theorem 140 223—225
Generators of an Abelian group 90
Geodesics 190—191
GL(n,R) 149—152
Global invariants and local geometry 221—225
Grassmann manifold 201 205—206
Grassmann manifold, complex 205
Grassmann manifold, oriented 205
Hamiltonian manifold 166
Hamiltonian structures 166—171
Hamiltonian structures and classical phase space 166
Hamiltonian structures and Hamilton's equations 168—169
Hausdorff space 27—28
hessian 227
Holes in a manifold and cohomology 131
Holomorphic structure 292—297
Holomorphic vector bundle 291—297
Homeomorphism 20—24 26 221—222
Homeomorphism and continuous deformation 20
Homeomorphism and equivalence classes 20—22
Homeomorphism as a continuous invertible map 23
Homology groups 79—108 120
Homology groups of 89
Homology groups of 104
Homology groups of a connected polyhedron 89
Homology groups of a contractible space 87
Homology groups of D2 87
Homology groups of projective plane 91
Homology groups, definition of 86
Homology groups, excision theorem of 98
Homology groups, simplicial 79
Homology groups, singular 107
Homology groups, torsion subgroup of 91
Homotopy 21—22 128—129 135 160—161 244—255 260—262
Homotopy and defects 244—255
Homotopy and instantons 260—262
Homotopy and pullback bundles 160—161
Homotopy group 109—119
Homotopy group Abelian nature for n>1 112
Homotopy group of 118
Homotopy group, definition for n>1 111
Homotopy group, first see "Fundamental group"
Homotopy of maps 21—22 128—129 135
Homotopy type 60
Homotopy, invariants 22
Hopf map 225
Horizontal lift 175 184 187 195
Horizontal subspace 175—177
Hurewicz Theorem 118
Induced bundle see "Pullback bundle"
instantons 256—297
Instantons and absolute minima 263—265
Instantons and finite action 259—260
Instantons and holomorphic vector bundles 289—294
Instantons and Minkowski space 297
Instantons and the second Chern class 269—272
Instantons and twistor methods 283—288
Instantons with k=1 265—269
Instantons with k>1 272 278—282
Instantons, construction of from holomorphic vector bundles 295—296
Instantons, topology and boundary conditions 260—262
Integral curves 172
Integration of 44—48
Integration of r-forms 44—49
Invariant polynomials 207—210
Invariant polynomials, homogeneity of 207
Invariants 221—225
Invariants of complex structure 221—222
Invariants of differential structure 221—222
Invariants of topological structure 221—225
Isotopy 21
Jacobi identity 182
Jacobian determinant 34—35 46
Jacobian matrix 150—151
k-cell 231
K-theory 139
Killing form 256
Kunneth formula 105
Lagrangian 256
Landau theory 236
Lie derivative 171—174
Linear independence and vector fields 157—158
Liouvilles theorem 296
Local product 141—143
Loop 53
Loop, homotopy of 54
Loop, inverse of 54
Loop, product of 54
Lorentz structures 171
Manifold 25—50 137
Manifold, definition of 26
Manifold, infinite dimensional 49
Manifold, orientable 137
Manifold, pseudo-Riemannian 29
Manifold, Riemannian 29 46
Maxwell's equations 197 298
Metric 164
Metric space 28—29
Metric, signature of 164
Minkowski space 258 297
Minkowski space, compactified 297
Moebius strip 34—35 137 141—148 152—156
Moebius strip as a fibre bundle 141—148
Moebius strip, principal bundle associated with 152—156
Monopoles 297—303
Monopoles and holomorphic vector bundles 301
Monopoles, Abelian 297—298
Monopoles, topological charge of 299—300
Morse inequalities 229
Morse inequalities, proof of 233—236
Morse lemma 229
Morse theory 49 227—243
Multi-instantons 272 278—282
N-loop 109
n-loop, homotopy of 110
n-loop, product of 110
Neighbourhoods 13
Nematic liquid crystal 250
|
|
|
Ðåêëàìà |
|
|
|