Авторизация
Поиск по указателям
Griffiths H. — Surfaces
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Surfaces
Автор: Griffiths H.
Аннотация: This book is an attempt to break that cycle, being designed for students
who might later teach children. It has two aspects, one mathematical, and
one educational. Mathematically, it expounds the topology of compact
surfaces as far as the Classification Theorem, and treats also the Morse
Theory of such surfaces. In fact the whole treatment is a 'handle-body'
approach. However, a conventional mathematical treatment would begin
4logically' with topological spaces, continuity and homeomorphisms,
before settling down to combinatorial ideas. Any student who could not
jump the initial conceptual thresholds would then be cut off from the rich
intuitive material that underlies the later work. And it is the rich intuitive
material that a future teacher will need, for introducing children to
3-dimensional thinking, so that he can stress the meaning rather than the
syntax.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1976
Количество страниц: 120
Добавлена в каталог: 20.07.2005
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
A-level 102 104
Absolute (maximum, minimum) 89
Addition equations 57 59
Addition theorem 48 57
Agreement 1 32
Agreement 2 33 96
Agreement 3 34 96
Agreement 4 39 96
Agreement 5 39 45
Agreement 6 53 97
Agreement 7 67 96
Amoeba 43 111
Analysis (subject) 97
Analysis, case-by-case 102
Annulus 9 35 69 73 76 99
ARC 22 67 97
Arc succession 25 32
Arrow (orienting) 28 44 79 110
Assembly Theorem 76 94 100
Assembly, ordered 75
Associativity 102
Axioms ix 100
bar 83 86
Bay 39
Beetle 17
Big Question 30 58
Bijection 101 102
Boundary 7 81 100
Bridge 17 50
Bridge, multi- 25
Bridge, twisted 17 52
Calculus 101 104
Cayley 82
Characteristic 18 100
Classification Theorem 61
Closed surface 7 54 61 94
Cocoon 34 66 69 73 101
Colouring problems 69 73
Compact 96 104 106
Complex (paper) 64 76 86
Connected 76 96
contour 85 86
Corner 7
Counter-example 103
Critical level 89 91
Critical point 85 89
Cross-cap 54 61
Crystal 6
cube 7 64
Curve (Jordan) 10 14 86 95 100 103
Cylinder 9
definitions 34 99
Differential invariant 66
dodecahedron 8 64
Double torus 27 107
Dual 64
Duality (Alexander) 100
Ear 15 48
Ear, multi- 24
Ear, twisted 16 48
Earthworm 43 111
EDGE 7; free 7
Equation: mountaineer's 82
Equation: of hyperboloid 106
Equation: of surface 12
Equation: of torus 12 106;
Equation: quadratic 64 103
Euler 18 66
Euler formula 66
Euler number 18 59 65 72 82 103 110
Examinations 103 104
Experiment 46 102
Family 32 58 96
Finer 71
Five-colour Theorem 69
Flange 36
Flood 83
flowchart 81 104
Fount (of type) 101
Four-colour Conjecture 69
Free (edge) 7
Fundamental theorem 58
Gallic Plan 61
Gallic Theorem 58
Genus 27 99
Graph theory 7 99
Handle 27 42 51 61
Heawood's Theorem 73
Height 82 94 104
Homeomorphism 95 96 105 106
Hyperboloid 106
icosahedron 8 64
Induction, mathematical 59 68 101 102
Invariance 63
Invariance Theorem 65 94
Invariant 65 75 81
Isomorphism 101
Isthmus 83 86
JORDAN 10
Jordan curve 10 14 86 95 100 103
Jordan curve theorem 95 100
Klein 21
Klein bottle 54 73
Lamina 32 68
Left-handed 10 41 99
Level 85 89
Lid 21 26
Linear graph 7 99
Manifold 98; generalized 96
MAP 69
Mathematical induction 59 68 101 102
Mathematical language 97 101
Mathematical model, modelling 95 96 104
Mathematical surface 95
Maximum 85 89
Maxwell, J.C. 82
Meaning ix
Minimum 85 89
Model 102
Moebius 10
Moebius band (or strip) 10 37 44 54 69 73 95
Moebius equation 13
Morse theory 82 98
Morse, M. 82
Morse, S. F B. 82
Mountaineer's equation 82
Multiplicity 25
Mystery surface 76 96
Non-orientable 29 61 79 94
Number: Euler 18 59 65 72 82 103 110
Number: orientability 60 66 75 80
Number: real 22 95 103
octahedron 8 64
Order of assembly 62 63 75
Ordered assembly 75
Orientability number 60 66 75 80
Orientability Theorem 78
Orientable 29 44 79 80 110
Oriented 29
Ovaloid 3
Overpass 15 41 99
Panel 2 32 66 95
Paper complex 64 76 86
Paper surface 7 94
Paper surface, Gallic 61
Paper surface, mystery 76 96
Paper surface, non-orientable 29 61 79 94
Paper surface, orientable, oriented 29 44 79 80 110
Paper surface, with boundary 10
Parity 60 103
PASS 82 84 89
Pass, over- 99
Pass, under- 99
Peak 82 84 89
Pedagogical Axiom ix 100
Pit 82 84 89
Plan 39 44 58 101 102
Planar region (or surface) 14 39 41
Planting a concept 101 104
Plateau 82 85
Plato 7
Platonic polyhedra 8 34 64
Platonic solids 7
Polygonal Jordan Curve Theorem 95
Polyhedron, regular 8 76
Prescription 45
prism 9
Projective geometry 22
Projective plane 22 54 73
Proof (notion of) x 31
Proper panelling 64 78
Punctured Klein bottle 21 38 44
Punctured projective plane 22
Punctured sphere with g handles 26 27
Punctured torm 21 17
Quadratic equation 64 101
Question (Big) 30 58
Rcpanelling 25 63 65 71
Recognition Claim 54
refinement 71
Regular polyhedron 8 76
Ridge 85
Rule 1 2
Rule 2 6
Saddle point 85 86
Schoenfliess Theorem 95 100 103
Screwdriver rule 30
Sculpture, xi 56 85
Sketching 102
Skull 43 111
Slicing plane 90
Sphere 105
Sphere, punctured 26 27
Sphere, with g handles 27 43 54
Spiral approach 101
Star 76 96
Subtraction (of panel) 64
Surface: mathematical 95
Surface: mystery 76 96
Surface: paper 7
Surface: planar 14
Tape 2 65 96
Tests 17 64
tetrahedron 7 64
Theorem (explanation) 34
Theorems: Addition 48 57;
Theorems: Assembly 76 94 100
Theorems: Classification 61
Theorems: Five-colour 69
Theorems: Fundamental 58
Theorems: Gallic 58
Theorems: Heawood's 73
Theorems: Invariance 65 94
Theorems: Jordan Curve 95 100
Theorems: Orientability 78
Theorems: Schoenfliess 95 103
Theorems: Trading 46 54
Torus 7 73 94 106
Torus equation 12 106
Torus, double 27 107
Torus, punctured 21 37
Trading Theorem 46 54
Triangulation 67 96
Trick 51 102
Twist 10 17 41 80 81 99
Two-sided 29 30
Underpass 15 41 99
Understanding 104
Uniqueness (of plan) 60
Vertices 95 100
Volcano 82 85
Реклама