Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Courant R., Robbins H. — What Is Mathematics?: An Elementary Approach to Ideas and Methods
Courant R., Robbins H. — What Is Mathematics?: An Elementary Approach to Ideas and Methods



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: What Is Mathematics?: An Elementary Approach to Ideas and Methods

Àâòîðû: Courant R., Robbins H.

Àííîòàöèÿ:

Written for beginners and scholars, for students and teachers, for philosophers and engineers, What is Mathematics? is a sparkling collection of mathematical gems that offers an entertaining and accessible portrait of the mathematical world. Brought up to date with a new chapter by Ian Stewart, this second edition offers new insights into recent mathematical developments and describes proofs of the Four-Color Theorem and Fermat's Last Theorem, problems that were still open when Courant and Robbins wrote this masterpiece, but ones that have since been solved.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: 2nd

Ãîä èçäàíèÿ: 1996

Êîëè÷åñòâî ñòðàíèö: 566

Äîáàâëåíà â êàòàëîã: 12.06.2007

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
"Infinitely small"      433—436 518—523
Absolute value      57
Acceleration      425
Addition, of complex numbers      90
Addition, of natural numbers      1—3
Addition, of rational numbers      53
Addition, of real numbers      70
Addition, of sets      110
Adjunction of irrationals      132
Alexander polynomial      503 505
Algebra, boolean      114
Algebra, fundamental theorem of      101—103 269—271
Algebra, of number fields      117—140
Algebra, of sets      108—116 494—495
Algebraic equations      101—103 269—271
Algebraic numbers      103—104
Algorithm and formula for primes      487
Algorithm and Steiner's problem      508—512
Algorithm, definition of      44
Algorithm, Euclidean      42—51 494 519
Algorithmic complexity theory      509—512
Analysis, nonstandard      518—523
Analytic geometry      72—77 191—196 488—494
Analytic geometry, of n dimensions      228—230
Angle of complex number      94
Antecedent point of mapping      141
Appollonius' problem      117 125—127 161—162
Archimedes' trisection of the angle      138 519—520
Area      399—401 464—465
Arithmetic, fundamental theorem of      23 46—48
Arithmetic, laws of      1—4
Arithmetical mean      361—365
Arithmetical progressions      12—13 487
Arithmetical progressions, primes in      26—27
Associative laws, for natural numbers      2
Associative laws, for rational numbers      54
Associative laws, for sets      110
Asymptotes of hyperbola      76
Asymptotically equal      29
Axes of conics      75—76
Axes of coordinates      73
Axiomatics      214—217
Axioms      214—217 494 519
Bicontinuous (= continuous in both directions)      241
Binomial series      475—476
Binomial theorem      16—18
Bisection of segment with compass alone      145
Biunique correspondence      78
Bolzano's theorem      312—313
Bolzano's theorem, applications of      317—321 506
Boolean algebra      114
Boundary conditions in extremum problems      376—379 506—507
Bounded sequence      295
Brachistochrone problem      379—381 383—384
Brianchon's theorem      190 191 209—212
Calculus      398—486 502—510 523
Calculus of variations      379—385
Calculus, Fundamental Theorem of      436—439
Cantor's middle thirds set      248—249 501
Cantor's theory of infinite sets      77—86 494
cardinal number      83—86 493
Cartesian coordinates      72—74
Center of circle, compass construction of      146
Characteristic, Euler's      236—240 258—259 262
Circle, equation of      74
Classification (topological) of surfaces      256—264 502—503
Coaxial planes      176
Collinear points      170
Combinatorial geometry      230—234
Commutative laws, for natural numbers      2
Commutative laws, for rational numbers      51
Commutative laws, for sets      110
Compact sets      316
Compass constructions      145—146 147—151
Complement of a set      111
Complete quadrilateral      170—180
Complex conjugate      93
complex numbers      88—103
Complex numbers, absolute value of      93
Complex numbers, angle of      94
Complex numbers, modulus of      93
Complex numbers, operations with      90—91
Complex numbers, trigonometric representation of      95
Complex variable, theory of functions of a      478—479
Composite numbers      22
Compound functions      281—283
Compound interest      457
Concurrent lines      170
Congruence of geometrical figures      166
Congruences (arithmetical)      31—40
Conics      198—212
Conics, equations of      74—77
Conics, line      207
Conics, metric definition of      199 494 496
Conics, point      204
Conics, projective definition of      204
Conjugate, complex      93
Conjugate, harmonic      175—176
Connectivity      243—244
Constant      273
Constructions, geometrical      117—164
Constructions, Mascheroni      147—151
Constructions, of number fields      120—127
Constructions, of rational quantities      120—122
Constructions, of regular polygons      122—125
Constructions, of square roots      122
Constructions, with compass alone      145—146 147—152
Constructions, with straightedge alone      151—152 196—198
Constructions, with various instruments      140—164
Constructive numbers and number fields      127—134
Constructive numbers and number fields, definition      132—133
Constructive proof      86
Continued fractions      49—51 301—303
Continuity of function of one variable      283—280 310—312 327—328 423
Continuity of function of several variables      288
Continuous variable      274
Continuum Hypothesis      88 493—494
Continuum of real numbers      68
Continuum of real numbers, denumerability      79—80
Contour lines      286—287
Convergence, of sequences      294
Convergence, of series      472 478—479
Coordinates, general      192
Coordinates, homogeneous      193—196
Coordinates, rectangular (Cartesian)      73
Coplanar lines      176
Correspondence, for sets      78
Correspondence, projective      178 204
Counting      78
Cross-cap      261 262
Cross-ratio      172—180 185
Curvature, mean      386—387
Curve, elliptic      491—493
Curve, equation of      74—77
Curve, length of      466—469
Cut (in real number system)      71—72
Cycloids      152—155 380—381
Cyclotomic equation      99—100
Damped oscillations      459
De Moivre's theorem      96 98—100
Decagon, construction of regular      122—123
Decimal fractions      61—63
Dedekind cut      71—72
Deformation      242
Delta ($\Delta$)      402
Density of rational numbers      58
Denumerability of rational numbers      79—80
Dependent variable      275
Derivative      414—433
Derivative, second      426 435
Desargues's theorem      170—172 187—188
Differential equations      453—461
Differential quotient      434
Differentials      433—436 518
Differentiation      417 423 427—433 462—464
DIMENSION      248—251 499—501
Diophantine equations      50—51 487 491
Diriehlet's principle      368
Discontinuities of functions      261—280
Discontinuous functions as limits of continuous functions      325
Distance      74 316
Distributive laws, for natural numbers      2
Distributive laws, for rational numbers      54
Distributive laws, for sets      110
Divergence, of sequences      204
Divergence, of series      472
Division by zero excluded      56 90
Domain of a variable      273
Doubling of the cube      117 134—135 146 147
Duality, principle of, in algebra of sets      112
Duality, principle of, in geometry      191 193—196 209 217
Duodecimal system      6
Dyadic system      8
Dynamics, Newtonian      460—461 506
e, as base of natural logarithms      445
e, as limit      448—450
e, Euler's number      297—299
e, expressions for      298 302 303
e, irrationality of      298—299
Eccentricity (of conics)      75
Ecole Polytechnique      167
Ellipse, equation of      75
Ellipse, tangent properties of      333—334
Elliptic curves, theory of      491—493
Elliptic geometry      224—227 489—490
Elliptic points      226
Empirical induction      10
Empty set      18 494
Epicycloid      155
Equation, cyclotomic      99—100
Equation, Diophantine      50—55 487 491
Equation, multiplicity of roots of      102
Equation, of a curve      74—77
Equation, of circle      74
Equation, of ellipse      75 404
Equation, of hyperbola      75—76 494
Equation, of straight line      75 490—492
Equation, quadratic      91—92 302
Equation, roots of      101
Equations of motion      460—461
Equivalence of sets      78
Eratosthenes, sieve of      25 489
Ergodic motion      353—854
Erlanger Program      167
Euclidean algorithm      42—51 494 519
Euler's characteristic      236—240 258—259 262 496—497
Euler's phi-function      48 49
Excluded middle, law of      86
Exhaustion, method of      400
Existence proofs      86 366—373
Existence, mathematical      88
Experimental solution of minimum problems      385—397
Exponential function      440—447 449—450
Exponential function, differential equation of      454—467
Exponential function, order of magnitude of      469—470
Extension field      129
Extraction of square root, geometrical      122
Extrema and inequalities      361—366
Extreme distances to given curve      336—338
Extremum problems      329—397
Extremum problems in elementary geometry      330—338
Extremum problems with boundary conditions      376—379 506—507
Extremum problems, general principle in      338—341
Factorial n      17
Factorization, unique      23 46—48
Factors, prime      23
Fermat numbers      25 119
Fermat's last theorem      40—42 491—493
Fermat's principle      381—383
Fermat's theorem      37—38 49
Field      56
Fields, algebra of number      117—140
Fields, geometric construction of      120—127
Five color theorem      261—267 495—499
Fixed point theorem      251—255
Focus of conic      75
Formalism      88 215
Foundations of mathematics      87—88
Four color problem      246—248 496—499
Fractals      499—501
Fractions, continued      49—51 301—303
Fractions, decimal      61—63
Frey's elliptic curves      491—492 493
Functions (and limits)      272—328
Functions of a complex variable      478—479
Functions of several variables      286—288
Functions, compound      282—283
Functions, continuity of      283—286 288 310—312 327—328
Functions, convex      500
Functions, definition of      274
Functions, graphs of      278
Functions, inverse      278—281
Functions, monotone      280
Functions, primitive      438
Fundamental theorem of algebra      101—103 269—271
Fundamental Theorem of Arithmetic      23 46—48
Fundamental theorem of the calculus      436—439
Generalization, principle of      56
Genus of surface      256—258 262
Geodesic      226
Geodesics on a sphere      384—385
Geometric measure theory      518
Geometrical constructions, theory of      117—164
Geometrical mean      361—365
Geometrical progression      13—14
Geometrical series      65—66
Geometrical transformations      140—141 165—167
Geometry, analytic      72—77 191—196 488—494
Geometry, axioms in      214—217
Geometry, combinatorial      230—234
Geometry, elliptic      224—227 489—490
Geometry, extremum problems in elementary      330—338
Geometry, hyperbolic      218—224
Geometry, inversion      140—146 158—164
Geometry, n-dimensional      227—234
Geometry, non-Euclidean      218—227
Geometry, projective      165—214
Geometry, Riemannian      224—227 489—490
Geometry, synthetic      165
Geometry, theory of constructions in      117—164 196—198
Geometry, topological      235—272 502—503
Goldbach's theorem      30—231 488—490
Graph of a function      279
Greatest common divisor      413—445
Greek problems, three famous      117 134—140
Group      168
Growth, law of      457
Harmonic conjugate      175—176
Harmonic cross-ratio      175—176
Harmonic series      479—480
Hart's inventor      157—158
Hausdorff dimension      499—501
Heptagon, impossibility of constructing regular      138—139
Heron's theorem      330—332
Hexagon, construction of regular      123
Homfly polynomial      505
Homogeneous coordinates      193—296
Hyperbola, equations of      75—76
Hyperbola, tangent properties of      334—336
Hyperbolic functions      503—504
1 2 3
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå