Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Courant R., Robbins H. — What Is Mathematics?: An Elementary Approach to Ideas and Methods
Courant R., Robbins H. — What Is Mathematics?: An Elementary Approach to Ideas and Methods



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: What Is Mathematics?: An Elementary Approach to Ideas and Methods

Àâòîðû: Courant R., Robbins H.

Àííîòàöèÿ:

Written for beginners and scholars, for students and teachers, for philosophers and engineers, What is Mathematics? is a sparkling collection of mathematical gems that offers an entertaining and accessible portrait of the mathematical world. Brought up to date with a new chapter by Ian Stewart, this second edition offers new insights into recent mathematical developments and describes proofs of the Four-Color Theorem and Fermat's Last Theorem, problems that were still open when Courant and Robbins wrote this masterpiece, but ones that have since been solved.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: 2nd

Ãîä èçäàíèÿ: 1996

Êîëè÷åñòâî ñòðàíèö: 566

Äîáàâëåíà â êàòàëîã: 12.06.2007

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Hyperbolic geometry      214—224
Hyperbolic paraboloid      286
Hyperbolic points      226
Hyperboloid      212—214
Hyperreal numbers      519—521
Hypocycloid      154
Ideal elements in projective geometry      180—185
Image point (of mapping)      141
imaginary numbers      see "Complex numbers"
incidence      169
Incommensurable segments      58—61
Independent variable      275
Indirect proof      86—87
Induction, empirical      10
Induction, mathematical      9—20
Inequalities      3—4 15—16 57 58 94 322 361—366 501
Infinite continued fractions      301—303
Infinite decimals      61—63
Infinite products      300 481—481 482
Infinite series      63—66 472—477
Infinitude of primes      22 26—27 481
infinity      56 77—88
Infinity, elements at (in projective geometry)      180—185 493
Infinity, mathematical analysis of      77—88
Infinity, point at (in inversion geometry)      142
Integer, principle of the smallest      18—19
Integers and continuum hypothesis      493
Integers and definition of dimension      499
Integers and fractal sets      501
Integers and Hausdorff dimension      500 501
Integers and nonstandard analysis      520
Integers, negative      55
Integers, positive      1—9
integral      399—414 464—465 504—510
Interest, compound      457
Intersection of sets      110 494—495
interval      57
Intervals, nested      68
Intuitionism      86—87 215
Invariance      165—167
Invariance of angles under inversion      158—159
Invariance of cross-ratio      173—174
Inverse functions      278—281
Inverse operations      3
Inverse points      141
Inverse points, construction of      144—145
Inversion geometry      140—146 158—164
Inversors      155—158
Irrational numbers, as infinite decimals      63
Irrational numbers, defined by nested intervals      68—71
Irrational numbers, defined by ruts      71—72
Irrational numbers, defined by sequences      72
Isoperimetric problems      373—373 376
Iteration, limits by      326—327
Jones polynomial      501 503 505
Jordan curve theorem      244—246 267—269
Jump discontinuity      284
Klein's bottle      262
Klein's model      219—222
Knots      255—256 501—505
Least squares, method of      365—366
Leibniz and nonstandard analysis      519 521—522
Leibniz' formula for $\pi$      441
Length of a curve      466—469
Level lines      286—287
Light rays, extremum property of      330—332
Light triangles      352—353
Limits      289—321
Limits by continuous approach      303—312
Limits by iteration      326—327
Limits of geometrical series      65—66
Limits of infinite decimals      63—66
Limits of sequences      289—303
Limits, examples on      322—327
Line at infinity      182
Line conic      207
Lines, concurrent      170
Lines, contour      286—287
Lines, Coplanar      176
Lines, pencil of      203
Linkages      155—158 501—505
Liouville's theorem      104—107
Log n!, order of magnitude of      471—472
Logarithm, natural      28 443—446 450—453 469—470 500
Logic, mathematical      87—88 112—114
Logical product      110 494
Logical sum      110 494
Magnitude, orders of      469—472
Mandelbrot set      499—500 501
Map, regular      264
Map-coloring problem      246—248 264—267
Mapping      141
Mascheroni constructions      147—152
Mathematical induction      9—20
Mathematical logic      87—88 112—114
Maxima and minima      329—397 426—427 433
Mean, arithmetical      361—365
Mean, geometrical      361—365
Means, inequality connecting      361—365
Mechanical instruments, constructions with      152—155
Mechanics, problem in      505—507
Metamathematics      88
Metric geometry      169
Minimax, points of      343—345
Modulo d      32
Modulus of complex number      93
Moebius strip      259—262
Monotone function      280
Monotone sequence      295—297
Morse relations      345
Motion, equations of      460—461
Motion, ergodic      353—354
Motion, rigid      141
Multiplicity of roots of algebraic equation      102
n-dimensional geometry      227—234
Natural numbers      1—20 520
negative numbers      54—55
Newtonian dynamics      460—461 506
Non-denumerability of continuum      81—83
Non-Euclidean geometry      213—227
Nonstandard analysis      518—523
NP-complete      512
Number fields      127—134
Number system      51—107 501
Numbers, algebraic      103—104
Numbers, cardinal      83—86 493
Numbers, complex      88—103
Numbers, composite      22
Numbers, constructlble      127—134
Numbers, Fermat      25 119
Numbers, natural      1—20 520
numbers, negative      54—55
Numbers, prime      21—31
Numbers, prime, Pythagorean      40—42
Numbers, prime, rational      52—58 520
Numbers, prime, real      68—72
Numbers, prime, transcendental      103—104
One-sided surfaces      259—264
orders of magnitude      469—472
Pappus' theorem      188
Paradoxes of the infinite      87
Paradoxes of Zeno      305—306
Parallel postulate      218
Parallelism and infinity      180—185 493
Pascal's theorem      188 191 209—212
Pascal's triangle      17
Peaucellier's inversor      155—167
Pencil of lines      203
Pentagon, construction of regular      100 122—123
Perspective      169
PI      140 299—300 303 441—442
Plane at infinity      184—185
Plateau's problem      386 514 515—516 518
Point conic      204
Points, at infinity      180—185
Points, collinear      170
Points, range of      207
Polyhedra, Euler characteristic of      236—240 258—259 262
Polyhedra, genus of      256—258 262
Polyhedra, in n dimensions      227—234
Polyhedra, one-sided      259—262
Polyhedra, regular      236—240
Polyhedra, simple      236
Polynomial time      509—612
Polynomials and computability      488
Polynomials and formula for primes      487—488
Polynomials and knots      501 503 505
Polynomials, Alexander      503 505
Polynomials, HOMFLY      505
Polynomials, Jones      501 503 505
Polynomials, variables of      487—488
positional notation      4
Postulates      214
Prime number theorem      27—30 482—486 487—490
PRIMES      21—31 481 482—486 487—490
Primitive functions      438
probability      114—116
Product, infinite      300 481—482
Product, logical      110
Progressions, Arithmetical      12—13 26—27 487—488
Projective correspondence      178—261
Projective geometry      165—214
Projective transformation      167—170
Proof and sense of "theorem"      438
Proof via nonstandard analysis      523
Proof: constructive, indirect, and existential      86—87
Pythagorean numbers      40—42 492
Quadrants      73
Quadratic equation      91—92 302
Quadratic residues      38
Quadric surfaces      212—214
Quadrilateral, complete      179—180
Radian measure      277—278
Radioactive disintegration      455—457
Range of points      207
Rational numbers      52—58 520
Rational numbers, density of      58
Rational numbers, denumerability of      79—80
Rational numbers, operations with      53—54
Rational quantities, geometrical construction of      120—122
Real numbers      58—72
Real numbers, continuum of      68 493
Real numbers, operations with      70—71 519
Reflection in a circle      140—146
Reflection in a system of circles      163—164
Reflection in one or more lines      330—332
Reflection in triangles      352—353
Reflection, general extremum problems in      353—354
Reflection, repeated      162—164
Regular polygons, construction of      119 122—125 495
Regular polyhedra      236—240
Regular polyhedra, n dimensional      227—234
Relativity      227 229
Residues, quadratic      38—40
Riemannian geometry      224 227 489—490
Rigid motion      141
Roots of unity      98—100
Schwarz's triangle problem      346—354 377
Second derivative      426 435
Segment      57 73
Sense (of angles)      159
Septimal system      5—6 7—8
Sequences      289—303
Sequences, bounded      295
Sequences, convergent, divergent, and oscillating      294
Sequences, monotone      295—297
Sequences, theorem on      315—316
Series, infinite      472—477
Set      78
Set, Cantorian      494 501
Set, compact      316
Set, complement of      111
Set, empty      18 494
Set, fractal      501
Set, Mandelbrot      499—500 501
Sets, algebra of      108—116 494—495
Sets, equivalence of      78
Sierpirtski gasket      501
Sieves      25 489 490
Simple dosed curve      244
Simple polyhedron      236
Simply connected      243
slope      415 490
Smallest integer, principle of      18—19
Soap film experiments      385—397 513—518
Solvability of problems      118
Square root, geometrical construction of      122
Squaring the circle      140 147
Stationary points      3414146
Steiner constructions      151—152 196—198
Steiner's problem      354—361 377—379 391 507—513 515
Straight line, equation of      75
Straightedge constructions      151—152 196—198
Street network problem      see "Steiner's problem"
Subfield      138
Subscripts      5
Subset      109
Subset, proper      78
Sum of first n cubes      15
Sum of first n squares      14
Sum, logical      110 494
Surfaces, minimal      513—518
Surfaces, one-sided      259—264
Surfaces, quadric      212—214
Synthetic geometry      165
Tangent      415
Tangent properties of ellipse and hyperbola      333—336
Taniyama Conjecture      492—493
Taylor series      476—477
Theory of numbers      21—51 481 482—486 491
Topological classification of surfaces      256—261 502—503
Topological transformation      241
topology      235—271
Topology and critical points      345
Torus      248
Torus, three-dimensional      262—264
Transcendence of pi      104 140
Transcendental numbers      103—104 104—107
Transformations, equations of      288—289
Transformations, geometrical      140—141 165—167
Transformations, projective      167—170
Transformations, topological      241
Triangles and Steiner's problem      507—513
Triangles, extremum properties of      330 332—333 346—353 354—359
Trigonometric functions, definition of      277
Trisection of angle      117 137—138
Union (of sets)      110 494—495
Unique factorization      23 46—48
Unit circle      93 492
Unity, roots of      98—100
Unsolvability of Greek problems      134—140
Unsolvabitity, proofs of      120—140
Variable      273—277
Variable, complex      478
Variable, dependent      275
Variable, general notion of      273
Variable, independent      275
Variations, calculus of      379—385
Velocity      423—425
Vibrations      458—459
1 2 3
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå