Авторизация
Поиск по указателям
Devaney R.L. — An introduction to chaotic dynamical systems
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: An introduction to chaotic dynamical systems
Автор: Devaney R.L.
Аннотация: The study of nonlinear dynamical systems has exploded in the past 25 years, and Robert L. Devaney has made these advanced research developments accessible to undergraduate and graduate mathematics students as well as researchers in other disciplines with the introduction of this widely praised book. In this second edition of his best-selling text, Devaney includes new material on the orbit diagram fro maps of the interval and the Mandelbrot set, as well as striking color photos illustrating both Julia and Mandelbrot sets. This book assumes no prior acquaintance with advanced mathematical topics such as measure theory, topology, and differential geometry, Assuming only a knowledge of calculus, Devaney introduces many of the basic concepts of modern dynamical systems theory and leads the reader to the point of current research in several areas. The first two chapters introduce the reader to a broad spectrum of fundamental topics in dynamics: hyperbolicity, symbolic dynamics, structural stability, stable and unstable manifolds and bifurcation theory. Readers familiar with linear algebra and complex analysis will be led to the brink of contemporary research in the books concluding chapter, but for anyone with a background in calculus, Devaney provides a comprehensive exploration into the mathematics of chaos.
Язык:
Рубрика: Физика /Нелинейная динамика, Хаос /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Издание: second edition
Год издания: 1989
Количество страниц: 336
Добавлена в каталог: 16.08.2005
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
-function 8
-distance 54
Adding machine 137
Admissible sequence 144
Analytic map 261
Anosov map 190
Area preserving map 255
Asymptotic 19 185
Attracting fixed point 25 215 276
Attractor 25 201
Backward asymptotic 19 185
Baker map 39 52
Basin of attraction 280
Bifurcation 28 80
Bifurcation diagram 82
Bifurcation, Homoclinic 126
Bifurcation, period-doubling 82 90 310
Bifurcation, Saddle node 81 88 310
Block, L. 63
Branched manifold 209
Brouwer fixed point theorem 14
Bump function 8 17
Canonical family 109
Cantor bouquet 326
Cantor function 111
Cantor Middle-Fifths set 39
Cantor Middle-Thirds set 36 138
Cantor set 37 187 270
Cartesian product 171
Chain recurrence 232
Chain rule 10
Chaos 50 268
Closed set 14
Closing Lemma 116
Completely invariant 269
composition 10
Cone 238
Cone field 238
Continued fraction 307
Continuous dynamical system 3
Contraction mapping theorem 172
Core 238
Cover 61
Covering map 102
Critical point 10
DA map 212
Degenerate critical point 19
Degenerate homoclinic orbit 124
Dendrite 294
Denjoy map 108 112
Dense orbit 42
Dense set 15
Devil’s staircase 110
Diffeomorphism 9 170
Discrepancy 142
Discrete dynamical system 2
Douady, A. 260 316
double 67 137
Dynamical system 2
Eigenvalue 164
Eigenvector 164
Elliptic point 255
Elliptic transformation 267
Escape rate 314
Eventually periodic point 18
Exceptional point 274
Expanding attractor 208
Expansive 50
External ray 312
Fatou, P. 260
Fibonacci sequence 101
Filled in Julia set 311
First return map 75
Fixed point 18
Foliation 191
Forward asymptotic 19 185
Fractal 37
Full family 153
Fundamental domain 55
genealogy 154
Gradient like 231
Graph transform 226
Graphical analysis 20 32
Guckenheimer, J. 63
Hartman’s theorem 58
Henon attractor 211 213
Henon map 170 251
Heteroclinic point 122 188 233
Homeomorphism 9
Homoclinic bifurcation 125 257
Homoclinic orbit 123 188
Homoclinic point 122 194 233
Hopf bifurcation 242—244
Hopf bifurcation theorem 249
Horizontal curve 224
Horizontal line field 228
Hubbard, J. 260 316
Hyperbolic 24—28 214
Hyperbolic, fixed point 24 215
Hyperbolic, periodic point 24 21S
Hyperbolic, set 38 187 236
Hyperbolic, total automorphism 191
Hyperbolic, transformation 267
Implicit function theorem 10 171
Indifferent periodic point 276
Injective 9
integral 181
Intermediate Value Theorem 11
Inverse function theorem 172
Inverse limit 206
Involution 188 255
Irrational rotation 21
Iteration 2
Itinerary 44
Jacobi’s theorem 21
Jordan form 169
Julia set 269
Julia, G. 260
Kneading sequence 141
Kneading theory 140—143
Koenigs 276
Kupka — Smale theorem 117
Liapounov function 176
Lift 102
Limit point 14
Linear automorphism 230
Linear map 161
Linear structural stability 59
Local stable manifold 217
Local stable set 26
Local unstable manifold 217
Local unstable set 122
Lozi attractor 214
Mandelbrot set 295 299 311—317
Mandelbrot, B. 260
Mapping 17
Markov, partition 196
Matrix 161
Matrix representation 163
Maximum principle 263
Mean value theorem 10
Metric 40
Minimal set 136
Misiurewicz, M. 63 137 320
Mobius transformation 267
Montel’s theorem 274
Morse — Smale Map 59 114 235
Moser Twist Theorem 257
Moser, J. 276
Neutral periodic point 300
Non-degenerate critical point 19
Non-degenerate homoclinic orbit 124
Non-wandering 47
Normal family 272
Normal form 245
One-to-one 8
Onto 9
Open set 15
Orbit 17
Orbit diagram 134
Orbit, backward orbit 17
Orbit, forward orbit 17
Orbit, recurrent orbit 47 115
Orientation preserving 102
Palis, J. 235
Parabolic transformation 267
Perfect set 37
Period-doubling bifurcation 82 90 130 240 310
Periodic point 18
Periodic point, attracting 25
Periodic point, indifferent 276 300
Periodic point, neutral 300
Periodic point, repelling 26
Periodic point, weakly attracting 28
Periodic point, weakly repelling 27
Petal 302
Phase portrait 20
Plykin attractor 209
Pole 266
Quadratic map 31—39 268—272
Rational rotation 21
Recurrent point 47 116 232
Regular sequence 138
Renormalization 133 146
Repelling periodic point 26 215
Repellor 26
Reversible 255
Riemann sphere 265
Rotation number 103
Saddle node bifurcation 80 88 240 310
Sarkovskii order 62 256
Sarkovskii’s theorem 60 99
Schroder functional equation 277
Schwarz lemma 264
Schwarzian derivative 68—79 268
Sector bundle 223
Semi-conjugate 51
Sensitive dependence 49
Sequence space 40 184
Shift map 40 184 270
Siegel, C.L. 276 306
Simply connected 262
Sink 25 215
Smale horseshoe map 180
Smale, S. 93
Smooth function 8
Snap-back repellor 122
Solenoid 201
Source 26 215
Stable manifold 218 237
Stable set 19 185 269
Stable subspace 177
Standard family 109
Standard form 167
Steiner circle 268
Strange Attractor 211 258
Structural stability 53
Subshift of finite type 94 199
Sullivan, D. 260
Superattracting 276
Surjective 9
Symbolic dynamics 39—42 184 256
Tangent bifurcation 81
Tchebycheff polynomial 52
Tent map 38 52
Topological conjugacy 47
Topological transitivity 42 49
Torus 171 190
Totally disconnected 37
Trace 99
Transition family 153
Transition matrix 94
Transitive attractor 204
Transversality 233
Transverse homoclinic point 194
Trapping region 202
Uniformizing map 314
Unimodal map 130 140
Unstable manifold 218 237
Unstable set 19 186
Unstable subspace 177
Wandering interval 80 109
Weierstrass p function 296
Williams, R. 93 208
Young, L.-S. 63
Реклама