Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Hogben L. — Handbook of Linear Algebra
Hogben L. — Handbook of Linear Algebra



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Handbook of Linear Algebra

Àâòîð: Hogben L.

Àííîòàöèÿ:

The Handbook of Linear Algebra provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use handbook format. The esteemed international contributors guide you from the very elementary aspects of the subject to the frontiers of current research. The book features an accessible layout of parts, chapters, and sections, with each section containing definition, fact, and example segments. The five main parts of the book encompass the fundamentals of linear algebra, combinatorial and numerical linear algebra, applications of linear algebra to various mathematical and nonmathematical disciplines, and software packages for linear algebra computations. Within each section, the facts (or theorems) are presented in a list format and include references for each fact to encourage further reading, while the examples illustrate both the definitions and the facts. Linearization often enables difficult problems to be estimated by more manageable linear ones, making the Handbook of Linear Algebra essential reading for professionals who deal with an assortment of mathematical problems.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2006

Êîëè÷åñòâî ñòðàíèö: 1400

Äîáàâëåíà â êàòàëîã: 30.06.2008

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
$(\pm 1)$-matrices      31—8
$M_{0}$-matrices      35—12 to 35—13
(MRRR) multiple relatively robust representations      42—15 to 42—17
1hs, Mathematica software      73—20
Abelian, Lie algebras      70—2
Abs, Mathematica software      73—26
Absolute bound      28—11
Absolute errors, conditioning and condition numbers      37—7
Absolute errors, floating point numbers      37—13 37—16
Absolute irreducibility      67—1
Absolute matrix norms      37—4
Absolute values      17—1
Absolute vector norm      37—2
Absolute, simple graphs      36—9 to 36—10
Absorbing, irreducible classes      54—5
Absorbing, vector norms      37—3
Absorbing, vector seminorms      37—4
Access equivalence irreducible classes      54—5
Access equivalence, irreducible matrices      29—6 29—7
Access equivalence, max-plus eigenproblem      25—6
Access equivalence, nonnegative and stochastic matrices      9—2
Action, group representations      68—2
Active branch, algebraic connectivity      36—5
Active constraints      51—1
Acyclic matrices multiplicative D-stability      19—6
Acyclic matrices rank revealing decompositions      46—9
Ad-nilpotency      70—4
Ad-semisimple linear transformation      70—4
Adaptive filtering, signal processing      64—12 to 64—13
Addition      1—1 1—3
Additive coset      2—5
Additive D-stability      19—7 to 19—8
Additive identity axiom      1—1
Additive IEPs (AIEPs)      20—10
Additive inverse axiom      1—1
Additive preservers      22—7 to 22—8
Adjacency convex set points      50—13
Adjacency digraphs      29—3 to 29—4
Adjacency graphs      28—5 to 28—7
Adjacency Hermitian matrices      8—2
Adjacency linear preservers      22—7
Adjacency vertices      28—2
Adjoint linear transformation      51—3
Adjoint map, Lie algebras      70—2
Adjoints of linear operators, inner product spaces      5—5 to 5—6
Adjoints of linear operators, semidefinite programming      51—3
Adjoints, inner product spaces      13—22
Adjugates, determinants      4—3
Adjusting random vectors      52—4
Admissibility, control theory      57—2
Admittance matrix      28—7
Advanced linear algebra, bilinear forms      12—1 to 12—9
Advanced linear algebra, cone invariant departure, matrices      26—1 to 26—14
Advanced linear algebra, equalities, matrices      14—1 to 14—17
Advanced linear algebra, functions of matrices      11—1 to 11—12
Advanced linear algebra, inequalities, matrices      14—1 to 14—17
Advanced linear algebra, inertia, matrices      19—1 to 19—10
Advanced linear algebra, integral domains, matrices over      23—1 to 23—10
Advanced linear algebra, inverse eigenvalue problems      20—1 to 20—12
Advanced linear algebra, linear preserver problems      22—1 to 22—8
Advanced linear algebra, matrix equalities and inequalities      14—1 to 14—17
Advanced linear algebra, matrix perturbation theory      15—1 to 15—16
Advanced linear algebra, matrix stability and inertia      19—1 to 19—10
Advanced linear algebra, max-plus algebra      25—1 to 25—14
Advanced linear algebra, multilinear algebra      13—1 to 13—26
Advanced linear algebra, numerical range      18—1 to 18—11
Advanced linear algebra, perturbation theory, matrices      15—1 to 15—16
Advanced linear algebra, pseudospectra      16—1 to 16—15
Advanced linear algebra, quadratic forms      12—1 to 12—9
Advanced linear algebra, sesquilinear forms      12—1 to 12—9
Advanced linear algebra, similarity of matrix families      23—1 to 23—10
Advanced linear algebra, singular values and singular value inequalities      17—1 to 17—15
Advanced linear algebra, stability, matrices      19—1 to 19—10
Advanced linear algebra, total negativity, matrices      21—1 to 21—12
Advanced linear algebra, total positivity, matrices      21—1 to 21—12
Affine algebraic variety      24—8
Affine function      50—1
Affine parameterized IEPs (PIEPs)      20—10 to 20—12
Affine subspace determination      65—2
Affine-independence      65—2
AIEPs (additive IEPs)      20—10
Aissen studies      21—12
Aitken estimator      52—8
Akian, Marianne      25—1 to 25—14
Akivis algebra      69—16 to 69—17
Albert algebra      69—4 69—14
Alexandroff inequality      25—10
Alexandrov’s inequality      31—2
Algebra      P—1
Algebra applications      see also «Nonassociative algebra»
Algebra applications, group representations      68—1 to 68—11
Algebra applications, Lie algebras      70—1 to 70—10
Algebra applications, matrix groups      67—1 to 67—7
Algebra applications, nonassociative algebra      69—1 to 69—25
Algebraic aspects, least squares solutions      39—4 to 39—5
Algebraic connectivity, absolute, simple graphs      36—9 to 36—10
Algebraic connectivity, Fiedler vectors      36—7 to 36—9
Algebraic connectivity, generalized Laplacian      36—10 to 36—11
Algebraic connectivity, matrix representations      28—7
Algebraic connectivity, multiplicity      36—10 to 36—11
Algebraic connectivity, simple graphs      36—1 to 36—4 36—9
Algebraic connectivity, trees      36—4 to 36—6
Algebraic connectivity, weighted graphs      36—7 to 36—9
Algebraic eigenvalues      25—9 see
Algebraic function, matrix similarities      24—1
Algebraic geometric Goppa (AG) code      61—10
Algebraic multigrid, preconditioners      41—11
Algebraic multiplicity      4—6
Algebraic Riccati equation (ARE)      57—10 57—12
Algorithms      see specific algorithm
Algorithms, Arbitrary Precision Approximating (APA)      47—6
Algorithms, Arnoldi      41—7
Algorithms, BiCGSTAB      41—8
Algorithms, biconjugate gradient (BCG/BiCG)      41—7 49—13
Algorithms, bilinear noncommutative      47—2
Algorithms, bit flipping algorithm      61—11
Algorithms, Conjugate Gradient (CG)      41—4 41—6
Algorithms, conjugate gradient squared (CGS)      41—8
Algorithms, Denardo      25—8
Algorithms, error analysis      37—16 to 37—17
Algorithms, ESPRIT      64—17
Algorithms, Euclid’s      23—2
Algorithms, fast matrix multiplication      47—2 to 47—7
Algorithms, Full Orthogonalization Method (FOM)      41—7
Algorithms, Generalized Minimal Residual (GMRES)      41—7 49—13
Algorithms, Lanczos algorithm      41—4 to 41—5
Algorithms, least squares solutions      39—6 to 39—7
Algorithms, left-preconditioned BiCGSTAB algorithm      41—12
Algorithms, Levinson-Durbin algorithm      64—8
Algorithms, Minimal Residual (MINRES)      41—4 41—6
Algorithms, MUSIC      64—17
Algorithms, non-Hermitian Lanczos algorithm      41—7
Algorithms, noncommutative      47—2
Algorithms, policy iteration      25—7
Algorithms, power algorithm      25—7
Algorithms, preconditioned conjugate gradient (PCG)      41—13
Algorithms, quasi-minimal residual (QMR)      41—8 49—13
Algorithms, restarted GMRES algorithm      41—7
Algorithms, singular value decomposition      45—4 to 45—12
Algorithms, transpose-free quasi-minimal residual (TFQMR)      49—14
Algorithms, two-sided Lanczos algorithm      41—7
All-ones matrix      52—4
Allowing characteristics, random vectors      52—4
Allowing characteristics, sign-pattern matrices      33—9 to 33—11
Alphabet, coding theory      61—1
Alt multiplication      13—17 to 13—19
Alternate path, single arc      35—14
Alternating bilinear forms      12—5 to 12—6
Alternative algebras      69—2 69—10
Alternative bimodule      69—10
Alternator      13—12
AMG code      41—12
Analysis applications, control theory      57—1 to 57—17
Analysis applications, differential equations      55—1 to 55—16
Analysis applications, dynamical systems      56—1 to 56—21
Analysis applications, Fourier analysis      58—1 to 58—20
Analysis applications, LTI systems      57—7 to 57—10
Analysis applications, stability      55—1 to 55—16
Analytical similarity      24—1
Analyzing fill      40—10 to 40—13
Angles, inner product spaces      5—1
Annihilator      3—8 to 3—9
Anti-identity matrices      48—2
Anticommutative algebra      69—2
Anticommutativity      70—2
Anticommutator      69—3
Antisymmetric maps      13—10 to 13—12
Antisymmetry      12—5
Aperiodicity, characterizing      9—3
Aperiodicity, irreducible classes      54—5
Aperiodicity, irreducible matrices      9—3
Aperiodicity, reducible matrices      9—7
Append, Mathematica software, linear systems      73—23
Append, Mathematica software, matrices manipulation      73—13
Append, Mathematica software, vectors      73—3
AppendColumns, Mathematica software      73—13
Appending, vertices      36—3
AppendRows, Mathematica software      73—13
Applications, algebra, group representations      68—1 to 68—11
Applications, algebra, Lie algebras      70—1 to 70—10
Applications, algebra, matrix groups      67—1 to 67—7
Applications, algebra, nonassociative algebra      69—1 to 69—25
Applications, analysis, control theory      57—1 to 57—17
Applications, analysis, differential equations      55—1 to 55—16
Applications, analysis, dynamical systems      56—1 to 56—21
Applications, analysis, Fourier analysis      58—1 to 58—20
Applications, analysis, stability      55—1 to 55—16
Applications, biological sciences      60—1 to 60—13
Applications, computer science, coding theory      61—1 to 61—13
Applications, computer science, information retrieval      63—1 to 63—14
Applications, computer science, quantum computation      62—1 to 62—19
Applications, computer science, signal processing      64—1 to 64—18
Applications, computer science, Web searches      63—1 to 63—14
Applications, fast matrix multiplication      47—9 to 47—10
Applications, geometry, Euclidean geometry      66—1 to 66—15
Applications, geometry, geometry      65—1 to 65—9
Applications, optimization, linear programming      50—1 to 50—24
Applications, optimization, semidefinite programming      51—1 to 51—11
Applications, physical sciences      59—1 to 59—11
Applications, probability and statistics, linear statistical models      52—1 to 52—15
Applications, probability and statistics, Markov chains      54—1 to 54—14
Applications, probability and statistics, multivariate statistical analysis      53—1 to 53—14
Applications, probability and statistics, random vectors      52—1 to 52—15
Applications, semidefinite programming      51—9 to 51—11
Apply, Mathematica software      73—3 73—5 73—27
Approximate Jordan form, Maple software      72—15
Approximate prescribed-line-sum scalings      9—21 to 9—22
Approximation, fast matrix multiplication      47—6 to 47—7
Approximation, linear programming      50—20 to 50—23
Approximation, orthogonal projection      5—7
ArbitraryPrecision Approximating (APA) algorithms      47—6
ArcSin, Mathematica software      73—26
ARE      see «Algebraic Riccati equation (ARE)»
Arithmetic Euclidean vector space      66—1
Arm, stars      34—10
Arnold Hypothesis, Strong      28—9 28—10
Arnoldi algorithm      41—7 41—8
Arnoldi decomposition      16—11
Arnoldi factorization, implicitly restarted Arnoldi method      44—2 to 44—4
Arnoldi factorization, pseudospectra      16—3
Arnoldi matrices      49—11
Arnoldi method      see «Implicitly restarted Arnoldi method (IRAM)»
Arnoldi method, eigenvalue computations      49—12
Arnoldi method, implicit restarting      44—6
Arnoldi method, large-scale matrix computations      49—10 to 49—11
Arnoldi method, sparse matrices      43—9 43—11
Arnoldi vectors, Arnoldi factorization      44—3
Arnoldi vectors, Arnoldi process      49—11
ARPACK subroutine package, computational modes      76—8 to 76—9
ARPACK subroutine package, directory structure and contents      76—3
ARPACK subroutine package, fundamentals      76—1 to 76—2 76—4
ARPACK subroutine package, Lanczos methods      42—21
ARPACK subroutine package, Matlab’s EIGS      76—9 to 76—10
ARPACK subroutine package, naming conventions      76—3 to 76—4
ARPACK subroutine package, precisions      76—3 to 76—4
ARPACK subroutine package, pseudospectra computation      16—12
ARPACK subroutine package, reverse communication      76—2
ARPACK subroutine package, setup of problem      76—5 to 76—7
ARPACK subroutine package, sparse matrices      43—9
ARPACK subroutine package, types      76—3 to 76—4
ARPACK subroutine package, use      76—7 to 76—8
Array arithmetic, Maple software      72—8
Array, Maple software      72—1 72—2
Array, Mathematica software, matrices      73—6
Array, Mathematica software, vectors      73—3 73—4
ArrayPlot, Mathematica software, fundamentals      73—27
ArrayPlot, Mathematica software, matrices      73—7 73—9
ArrayRules, Mathematica software      73—6
Arrays, Fourier analysis      58—2
Arrays, manifold      64—16
Arrays, Maple software      72—8 to 72—9
Arrays, response vector      64—16
Arrays, response vector, Maple software      72—8 72—9
Arrival estimation direction      64—15 to 64—18
Arrow, Mathematica software      73—5
Artin’s theorem      69—3 69—11
AspectRatio, Mathematica software      73—27
Assignment polytope      27—10
Associated divisor      61—10
Associated linear programming      50—14
Associated maps      13—19 to 13—20
Association schemes, graphs      28—11 to 28—12
Associations, generalized stars      34—11
Associative algebra      69—2
Associative center      69—5
Associative enveloping algebra      69—13
Associative nucleus      69—5
Associativity axiom      1—1 1—2
Associator ideal      69—5
Associator, nonassociative algebra      69—2
Asymmetric digraphs      35—2 see
Asymptotic spectrum      47—8
Asymptotic stability, control theory      57—2
Asymptotic stability, linear differential-algebraic equations      55—14
Asymptotic stability, linear ordinary differential equations      55—10
Asymptotic stability, LTI systems      57—7
Asymptotics, matrix powers      25—8 to 25—9
ATLAST M-file collection      71—20
Attractor-repeller decompositions      56—7
Augmented matrices, Bezout domains      23—9
Augmented matrices, systems of linear equations      1—9 1—11
Augmented systems, least squares solution      39—4
Autocorrelation matrix      64—5
Autocorrelation sequence      64—4
Automatic, Mathematica software, fundamentals      73—27
Automatic, Mathematica software, singular values      73—17
Automorphism, Lie algebras      70—1
Automorphism, ring, linear preservers      22—7
Autonomy, control theory      57—2
Backward errors, analysis      37—20
Backward errors, numerical stability and instability      37—18 37—20
Backward errors, one-sided Jacobi SVD algorithm      46—2
Backward stability, numerical stability and instability      37—18
Backward stability, numerical stability and instability, one-sided Jacobi SVD algorithm      46—2
BackwardsSubstitute, Maple software      72—9
Bad columns      50—8
Bad rows      50—8
Badly-conditioned data      37—7
Bai, Zhaojun      75—1 to 75—23
Bailey, D.      47—5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå