Àâòîðèçàöèÿ 
		         
		        
					
 
		          
		        
			         
		          
		        
			        Ïîèñê ïî óêàçàòåëÿì 
		         
		        
			        
					 
				        
					
			         
		          
		        
			         
		          
			
			         
		         
       		 
			         
		          
                
                    
                        
                     
                  
		
			         
		          
		        
			         
		          
		
            
	     
	    
	     
	    
	    
            
		 
                
                    Hogben L. — Handbook of Linear Algebra 
                  
                
                    
                        
                            
                                
                                    Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå      
 Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter 
 
                                 
                                
                                    Íàçâàíèå:   Handbook of Linear Algebra 
Àâòîð:   Hogben L.   
Àííîòàöèÿ:  The Handbook of Linear Algebra provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use handbook format. The esteemed international contributors guide you from the very elementary aspects of the subject to the frontiers of current research. The book features an accessible layout of parts, chapters, and sections, with each section containing definition, fact, and example segments. The five main parts of the book encompass the fundamentals of linear algebra, combinatorial and numerical linear algebra, applications of linear algebra to various mathematical and nonmathematical disciplines, and software packages for linear algebra computations. Within each section, the facts (or theorems) are presented in a list format and include references for each fact to encourage further reading, while the examples illustrate both the definitions and the facts. Linearization often enables difficult problems to be estimated by more manageable linear ones, making the Handbook of Linear Algebra essential reading for professionals who deal with an assortment of mathematical problems.
 
ßçûê:   
Ðóáðèêà:  Ìàòåìàòèêà / 
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ:  Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö  
ed2k:   ed2k stats  
Ãîä èçäàíèÿ:  2006 
Êîëè÷åñòâî ñòðàíèö:  1400 
Äîáàâëåíà â êàòàëîã:  30.06.2008 
Îïåðàöèè:  Ïîëîæèòü íà ïîëêó  |
	 
	Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà  | Ñêîïèðîâàòü ID 
                                 
                             
                        
                     
                 
                                                                
			         
	          
                
                    Ïðåäìåòíûé óêàçàòåëü 
                  
                
                    
                        Transient class matrices        9—15    
Transient state        54—7 to 54—9    
Transient substochastic matrices        9—15    
Transition graphs        54—5    
Transition matrix, coordinates and change of basis        2—10    
Transition matrix, Markov chains        4—10   54—1    
Transition probability        4—10    
Transitive tournament matrices        27—9    
Transpose, linear functionals and annihilator        3—8    
Transpose, Maple software        72—3   72—5   72—9    
Transpose, Mathematica software, eigenvalues        73—15   73—16    
Transpose, Mathematica software, fundamentals        73—27    
Transpose, Mathematica software, linear systems        73—23    
Transpose, Mathematica software, matrices manipulation        73—13    
Transpose, Mathematica software, matrix algebra        73—9    
Transpose, matrices        1—4    
Transpose-free quasi-minimal residual (TFQMR) linear systems of equations        49—14    
Transvection        67—3    
Tree of legs, simplexes        66—10    
Trees, algebraic connectivity        36—4 to 36—6    
Trees, digraphs        29—2    
Trees, graphs        28—2    
Trees, multiplicity lists        34—8 to 34—10    
Trees, sign pattern        33—9    
Trees, vines        34—15    
TREVC LAPACK subroutine        43—6    
TREXC LAPACK subroutine        43—7    
Triangle inequality, inner product spaces        5—2    
Triangle inequality, matrix norms        37—4    
Triangle inequality, vector norms        37—2    
Triangle inequality, vector seminorms        37—3    
Triangle, points        65—2    
Triangular back substitution        37—20    
Triangular factorization        1—13    
Triangular linear systems        38—5 to 38—7    
Triangular matrices        10—4    
Triangular property        35—2    
Tridiagonal matrices        21—4    
Tridiagonalization        42—5 to 42—9    
TridiagonalMatrix, Mathematica software        73—6    
TridiagonalSolve, Mathematica software        73—20    
Trigonometric form        58—3    
Trilinear aggregating technique        47—7    
Trilinear maps        13—1    
Trinomial distribution        52—4    
Trivial face        26—2    
Trivial factors        23—5    
Trivial linear combination        2—1    
Trivial perfect codes        61—9    
Trivial representation        68—3    
Tropical semiring        25—1    
TRSEN LAPACK subroutine        43—7    
TRSNA LAPACK subroutine        43—7    
Truncated singular value decomposition        39—5    
Truncated Taylor series        37—20 to 37—21    
Truncation errors        37—12    
Tsatsomeros, Michael        14—1 to 14—17    
TSC (total signed compound)        46—8    
Turbo codes        61—11    
Turing machine        62—2    
Turnpike theorem        25—9    
Twisted factorization        42—17    
Two(2)-design        32—2    
Two(2)-norm        37—2    
Two-bit Controlled-U gate        62—4 to 62—5    
Two-bit gate        62—7    
Two-dimensional column-major format        74—1 to 74—2    
Two-sided Lanczos algorithm        41—7    
UFD (unique factorization domain)        23—2    
ULV decomposition        39—12    
Unbounded region        50—1    
Uncertainty        59—7    
Uncontrollable modes        57—8    
Uncorrelated vectors, data matrix        53—2    
Uncorrelated vectors, random vectors        52—4    
Underflow        37—11 to 37—12    
Undirected graphs, digraphs        29—2    
Undirected graphs, modeling and analyzing fill        40—10    
Unicyclic graphs        36—3    
Uniform distribution        52—2    
Unimodular properties        23—5    
Union, graphs        28—2    
Unipotent, linear group ofdegree        67—1    
Unique factorization domain (UFD)        23—2    
Unique inertia        33—11    
Unique normalization        23—3 to 23—4    
Unit displacement rank matrix       46—9    
Unit round       37—12    
Unit triangular       1—4    
Unit vectors       5—1    
Unital characteristics       69—2    
Unital hull        69—5    
Unital matrices mappings        18—11    
Unitary matrices, adjoint operators        5—6    
Unitary matrices, orthogonality        5—3    
Unitary matrices, pseudo-inverse        5—12    
Unitary matrices, singular value decomposition        5—10    
Unitary properties        5—2    
Unitary properties, classical groups        67—5    
Unitary properties, equivalence        7—2    
Unitary properties, groups       67—5    
Unitary properties, Hessenberg matrix       64—15    
Unitary properties, invariance       17—2   18—6    
Unitary properties, invariant norms       17—5 to 17—7    
Unitary properties, linear operators        5—5    
Unitary properties, Schrodinger’s equation        59—7    
Unitary properties, similarity        7—2    
Unitary similarity, invariant, numerical radius        18—6    
Unitary similarity, matrices, special properties       7—1 to 7—5    
Unitary similarity, transformation to upper Hessenberg form       43—4    
Unitary similarity, upper Hessenberg form       43—4    
Units, certain integral domains       23—2    
Univariate linear model       53—11    
Universal enveloping algebra        70—2    
Universal factorization property        13—3 to 13—4    
Universal property, Lie algebras       70—2   70—3    
Universal property, symmetric and Grassmann tensors        13—14 to 13—15    
Universal quantum gates       62—7 to 62—8   see    
Unknown vector       1—9    
Unobservable modes       57—8    
Unordered multiplicities       34—1    
Unreduced Hessenberg matrix       44—3    
Unreduced upper Hessenberg        43—3    
Unsigned vectors       33—5    
Unstability, linear differential-algebraic equations       55—14    
Unstability, linear ordinary differential equations       55—10    
Unstability, subspaces       56—3    
Unsymmetric matrix eigensvalue techniques, dense Unsymmetric matrix eigensvalue techniques, matrix techniques       43—3 to 43—9    
Unsymmetric matrix eigensvalue techniques, fundamentals       43—1    
Unsymmetric matrix eigensvalue techniques, generalized eigenvalue problem       43—1 to 43—3    
Unsymmetric matrix eigensvalue techniques, sparse matrix techniques       43—9 to 43—11    
Updating, least squares solutions        39—8 to 39—9    
Upper Collatz-Wielandt numbers       26—4    
Upper Hessenberg matrices, Arnoldi factorization        44—3    
Upper Hessenberg matrices, block diagonal and triangular matrices       10—4    
Upper Hessenberg matrices, dense matrices       43—3    
Upper Hessenberg matrices, form       43—3   43—4    
Upper Hessenberg matrices, implicit restarting        44—6    
Upper Hessenberg matrices, Krylov space methods        41—8    
Upper Hessenberg matrices, linear systems of equations       49—13    
Upper Hessenberg matrices, pseudospectra        16—3    
Upper Hessenberg matrices, pseudospectra computation       16—11    
Upper Hessenberg matrices, spectral estimation       64—15    
Upper triangular properties, block diagonal and triangular matrices       10—4    
Upper triangular properties, generalized eigenvalue problem       43—2    
Upper triangular properties, linear matrix        38—5    
Upper triangular properties, matrices       1—4    
UpperDiagonalMatrix, Mathematica software       73—6    
Upward eigenvalues       34—11    
Upward multiplicity       34—11    
URV decomposition       39—11    
Valency, graphs       28—2    
Valuation       36—7    
Value, matrix games       50—18    
Vandermonde determinant       4—3    
Vandermonde matrices, factorizations       21—6    
Vandermonde matrices, linear systems conditioning       37—11    
Vandermonde matrices, Maple software       72—18    
Vandermonde matrices, rank revealing decomposition        46—9    
Vandermonde matrices, structured matrices       48—2    
Vandermonde matrices, symmetric indefinite matrices       46—16    
Vandermonde matrices, totally positive and negative matrices       21—3    
Variables, pivoting       50—10    
Variables, systems oflinear equations        1—9    
Variance, principal component analysis       53—5    
Variance, statistics and random variables       52—2    
Variance-covariance matrix       52—3    
Variety, simultaneous similarity       24—8    
vars, Mathematica software, linear programming       73—24    
vars, Mathematica software, linear systems       73—20   73—21    
Vaserstein, Leonid N.       50—1 to 50—24    
Vec-function       10—8    
Vector generation, Maple software       72—2 to 72—3    
Vector spaces,direct sum decompositions       2—5    
Vector spaces,grading       70—8    
Vector spaces,information retrieval       63—1 to 63—3    
Vector spaces,linear independence        2—4    
Vector, Maple software       72—1   72—2    
Vector, Mathematica software       73—3    
Vector-Matrixproducts, Maple software       72—6    
VectorNorm, Mathematica software        73—27    
VectorQ, Mathematica software        73—4    
Vectors        see specific type    
Vectors, balanced        33—5    
Vectors, control theory       57—2    
Vectors, Euclidean point space        66—1    
Vectors, fundamentals       1—1 to 1—3   2—3   3—2    
Vectors, Gauss elimination       38—7    
Vectors, Google’s PageRank       63—11    
Vectors, Maple software       72—2 to 72—4    
Vectors, Mathematica software       73—3 to 73—5    
Vectors, max-plus algebra       25—1    
Vectors, multiply, spare matrices        43—10    
Vectors, NMR protein structure determination       60—2    
Vectors, norms, error analysis       37—2 to 37—3    
Vectors, Perron — Frobenius theorem       26—2    
Vectors, query       63—2    
Vectors, seminorms, error analysis        37—3 to 37—4    
Vectors, sign solvability       33—5    
Vectors, space over       1—1    
Vectors, spaces       1—2    
Vectors, vector space method       63—2    
Vectors, vector space method, Maple software       72—9    
Vedell, Peter       60—13    
Vertex coloring       28—9    
Vertex independence number       28—9    
Vertex-edge incidence matrix       28—7 to 28—8    
Vertices, digraphs       29—1    
Vertices, Euclidean simplexes       66—7    
Vertices, graphs       28—1    
Vertices, nonnegative and stochastic matrices        9—2    
Vertices, phase 2 geometric interpretation       50—13    
Vertices, stars       34—10    
Vines        34—15    
Volodin, Kimmo Vahkalahti Andrei       53—14    
Volterra — Lyapunov stability       19—9    
von Neumann, J.       50—24    
Vorobyev — Zimmermann covering theorem       25—11    
vpa command, Matlab software       71—17   71—19    
Walk of length, digraphs       29—2    
Walk of length, graphs       28—1    
Walk-regular graphs        28—3    
Walks, digraphs       29—2    
Walks, irreducible classes       54—5    
Walks, products       29—4 to 29—5    
Walsh-Hadamard gate, quantum computation       62—3    
Walsh-Hadamard gate, universal quantum gates       62—7    
Walsh-Hadamard transform       62—10    
Wang, Jenny        75—1 to 75—23    
Wangsness, Amy       35—1 to 35—20    
Wanless, Ian M.       31—1 to 31—13    
Watkins, David S.        43—1 to 43—11    
Watkins, William       32—1 to 32—12    
Watson efficiency       52—9   52—10   52—13    
Weak combinatorial invariants       27—1   27—5    
Weak properties, cyclic of index       54—9    
Weak properties, duality        51—6    
Weak properties, expanding characteristics        9—8   9—11    
Weak properties, Floquet theory       56—15 to 56—16    
Weak properties, model       52—8    
Weak properties, numerical stability       37—19    
Weak properties, sign symmetric       19—3    
Weak properties, unitarily invariant       18—6    
web crawlers       63—9    
Web searches       63—8 to 63—10   see    
Wedin theorem        15—7    
Wehrfritz, B.A.F.       67—6    
Weierstrauss preparation theorem       24—4    
Weight characteristic, coding theory       61—2    
Weight characteristic, convolutional codes       61—11    
Weight characteristic, Fiedler vectors       36—7    
Weight characteristic, max-plus algebra       25—2    
Weight function, digraphs       29—2    
Weight function, Fiedler vectors       36—7    
Weight least squares problem       39—1    
Weight space       70—7    
Weighted bigraph       30—4    
Weighted digraphs        29—2    
Weighted graphs, algebraic connectivity       36—7 to 36—9    
Weighted graphs, Fiedler vectors        36—7    
Weiner, Paul        61—1 to 61—13    
Well-conditioned data       37—7    
Well-conditioned linear systems       37—10    
Weyl character formula        70—9    
Weyl group, BN structure       67—4    
Weyl group, Lie algebra and modules       70—9    
Weyl group, semisimple and simple algebras       70—4    
Weyl inequalities, eigenvalues       14—4    
Weyl inequalities, Hermitian matrices       8—3   8—4    
Weyl’s theorem       70—8    
Which, Mathematica software       73—8    
while loops, Matlab software       71—11    
White noise process       64—5    
Wide-sense stationarysignals        64—4    
Wiegmann studies        7—8    
Wielandt-Hoffman theorem        37—21    
Wiener deconvolution problem       64—10    
Wiener filter       64—10    
Wiener filtering        64—10 to 64—11    
Wiener prediction problem        64—10    
Wiener smoothing problem       64—10    
Wiener vertex        34—2    
Wiener — Hopf equations, linear prediction       64—7   64—8    
Wiener — Hopf equations, Wiener filter       64—11    
Wiens, Douglas P.       53—14    
Wild problem        24—10    
Wilkinson’s shift       42—9    
Wilk’s Lambda       53—13    
Wilson, Robert       70—1 to 70—10    
Winograd, Coppersmith and, studies       47—9    
Winograd’s commutative algorithm       47—2    
Winograd’s formula       47—5    
Wishart distribution       53—8    
With, Mathematica software, fundamentals       73—26    
With, Mathematica software, singular values        73—18    
Within-groups matrix       53—6    
Witsenhausen studies       30—9    
Witt dimension       69—19    
Witt index       67—5   67—6    
Witt’s Lemma       67—6    
                            
                     
                  
			 
		          
			Ðåêëàìà