Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Hogben L. — Handbook of Linear Algebra
Hogben L. — Handbook of Linear Algebra



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Handbook of Linear Algebra

Àâòîð: Hogben L.

Àííîòàöèÿ:

The Handbook of Linear Algebra provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use handbook format. The esteemed international contributors guide you from the very elementary aspects of the subject to the frontiers of current research. The book features an accessible layout of parts, chapters, and sections, with each section containing definition, fact, and example segments. The five main parts of the book encompass the fundamentals of linear algebra, combinatorial and numerical linear algebra, applications of linear algebra to various mathematical and nonmathematical disciplines, and software packages for linear algebra computations. Within each section, the facts (or theorems) are presented in a list format and include references for each fact to encourage further reading, while the examples illustrate both the definitions and the facts. Linearization often enables difficult problems to be estimated by more manageable linear ones, making the Handbook of Linear Algebra essential reading for professionals who deal with an assortment of mathematical problems.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2006

Êîëè÷åñòâî ñòðàíèö: 1400

Äîáàâëåíà â êàòàëîã: 30.06.2008

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Transient class matrices      9—15
Transient state      54—7 to 54—9
Transient substochastic matrices      9—15
Transition graphs      54—5
Transition matrix, coordinates and change of basis      2—10
Transition matrix, Markov chains      4—10 54—1
Transition probability      4—10
Transitive tournament matrices      27—9
Transpose, linear functionals and annihilator      3—8
Transpose, Maple software      72—3 72—5 72—9
Transpose, Mathematica software, eigenvalues      73—15 73—16
Transpose, Mathematica software, fundamentals      73—27
Transpose, Mathematica software, linear systems      73—23
Transpose, Mathematica software, matrices manipulation      73—13
Transpose, Mathematica software, matrix algebra      73—9
Transpose, matrices      1—4
Transpose-free quasi-minimal residual (TFQMR) linear systems of equations      49—14
Transvection      67—3
Tree of legs, simplexes      66—10
Trees, algebraic connectivity      36—4 to 36—6
Trees, digraphs      29—2
Trees, graphs      28—2
Trees, multiplicity lists      34—8 to 34—10
Trees, sign pattern      33—9
Trees, vines      34—15
TREVC LAPACK subroutine      43—6
TREXC LAPACK subroutine      43—7
Triangle inequality, inner product spaces      5—2
Triangle inequality, matrix norms      37—4
Triangle inequality, vector norms      37—2
Triangle inequality, vector seminorms      37—3
Triangle, points      65—2
Triangular back substitution      37—20
Triangular factorization      1—13
Triangular linear systems      38—5 to 38—7
Triangular matrices      10—4
Triangular property      35—2
Tridiagonal matrices      21—4
Tridiagonalization      42—5 to 42—9
TridiagonalMatrix, Mathematica software      73—6
TridiagonalSolve, Mathematica software      73—20
Trigonometric form      58—3
Trilinear aggregating technique      47—7
Trilinear maps      13—1
Trinomial distribution      52—4
Trivial face      26—2
Trivial factors      23—5
Trivial linear combination      2—1
Trivial perfect codes      61—9
Trivial representation      68—3
Tropical semiring      25—1
TRSEN LAPACK subroutine      43—7
TRSNA LAPACK subroutine      43—7
Truncated singular value decomposition      39—5
Truncated Taylor series      37—20 to 37—21
Truncation errors      37—12
Tsatsomeros, Michael      14—1 to 14—17
TSC (total signed compound)      46—8
Turbo codes      61—11
Turing machine      62—2
Turnpike theorem      25—9
Twisted factorization      42—17
Two(2)-design      32—2
Two(2)-norm      37—2
Two-bit Controlled-U gate      62—4 to 62—5
Two-bit gate      62—7
Two-dimensional column-major format      74—1 to 74—2
Two-sided Lanczos algorithm      41—7
UFD (unique factorization domain)      23—2
ULV decomposition      39—12
Unbounded region      50—1
Uncertainty      59—7
Uncontrollable modes      57—8
Uncorrelated vectors, data matrix      53—2
Uncorrelated vectors, random vectors      52—4
Underflow      37—11 to 37—12
Undirected graphs, digraphs      29—2
Undirected graphs, modeling and analyzing fill      40—10
Unicyclic graphs      36—3
Uniform distribution      52—2
Unimodular properties      23—5
Union, graphs      28—2
Unipotent, linear group ofdegree      67—1
Unique factorization domain (UFD)      23—2
Unique inertia      33—11
Unique normalization      23—3 to 23—4
Unit displacement rank matrix      46—9
Unit round      37—12
Unit triangular      1—4
Unit vectors      5—1
Unital characteristics      69—2
Unital hull      69—5
Unital matrices mappings      18—11
Unitary matrices, adjoint operators      5—6
Unitary matrices, orthogonality      5—3
Unitary matrices, pseudo-inverse      5—12
Unitary matrices, singular value decomposition      5—10
Unitary properties      5—2
Unitary properties, classical groups      67—5
Unitary properties, equivalence      7—2
Unitary properties, groups      67—5
Unitary properties, Hessenberg matrix      64—15
Unitary properties, invariance      17—2 18—6
Unitary properties, invariant norms      17—5 to 17—7
Unitary properties, linear operators      5—5
Unitary properties, Schrodinger’s equation      59—7
Unitary properties, similarity      7—2
Unitary similarity, invariant, numerical radius      18—6
Unitary similarity, matrices, special properties      7—1 to 7—5
Unitary similarity, transformation to upper Hessenberg form      43—4
Unitary similarity, upper Hessenberg form      43—4
Units, certain integral domains      23—2
Univariate linear model      53—11
Universal enveloping algebra      70—2
Universal factorization property      13—3 to 13—4
Universal property, Lie algebras      70—2 70—3
Universal property, symmetric and Grassmann tensors      13—14 to 13—15
Universal quantum gates      62—7 to 62—8 see
Unknown vector      1—9
Unobservable modes      57—8
Unordered multiplicities      34—1
Unreduced Hessenberg matrix      44—3
Unreduced upper Hessenberg      43—3
Unsigned vectors      33—5
Unstability, linear differential-algebraic equations      55—14
Unstability, linear ordinary differential equations      55—10
Unstability, subspaces      56—3
Unsymmetric matrix eigensvalue techniques, dense Unsymmetric matrix eigensvalue techniques, matrix techniques      43—3 to 43—9
Unsymmetric matrix eigensvalue techniques, fundamentals      43—1
Unsymmetric matrix eigensvalue techniques, generalized eigenvalue problem      43—1 to 43—3
Unsymmetric matrix eigensvalue techniques, sparse matrix techniques      43—9 to 43—11
Updating, least squares solutions      39—8 to 39—9
Upper Collatz-Wielandt numbers      26—4
Upper Hessenberg matrices, Arnoldi factorization      44—3
Upper Hessenberg matrices, block diagonal and triangular matrices      10—4
Upper Hessenberg matrices, dense matrices      43—3
Upper Hessenberg matrices, form      43—3 43—4
Upper Hessenberg matrices, implicit restarting      44—6
Upper Hessenberg matrices, Krylov space methods      41—8
Upper Hessenberg matrices, linear systems of equations      49—13
Upper Hessenberg matrices, pseudospectra      16—3
Upper Hessenberg matrices, pseudospectra computation      16—11
Upper Hessenberg matrices, spectral estimation      64—15
Upper triangular properties, block diagonal and triangular matrices      10—4
Upper triangular properties, generalized eigenvalue problem      43—2
Upper triangular properties, linear matrix      38—5
Upper triangular properties, matrices      1—4
UpperDiagonalMatrix, Mathematica software      73—6
Upward eigenvalues      34—11
Upward multiplicity      34—11
URV decomposition      39—11
Valency, graphs      28—2
Valuation      36—7
Value, matrix games      50—18
Vandermonde determinant      4—3
Vandermonde matrices, factorizations      21—6
Vandermonde matrices, linear systems conditioning      37—11
Vandermonde matrices, Maple software      72—18
Vandermonde matrices, rank revealing decomposition      46—9
Vandermonde matrices, structured matrices      48—2
Vandermonde matrices, symmetric indefinite matrices      46—16
Vandermonde matrices, totally positive and negative matrices      21—3
Variables, pivoting      50—10
Variables, systems oflinear equations      1—9
Variance, principal component analysis      53—5
Variance, statistics and random variables      52—2
Variance-covariance matrix      52—3
Variety, simultaneous similarity      24—8
vars, Mathematica software, linear programming      73—24
vars, Mathematica software, linear systems      73—20 73—21
Vaserstein, Leonid N.      50—1 to 50—24
Vec-function      10—8
Vector generation, Maple software      72—2 to 72—3
Vector spaces,direct sum decompositions      2—5
Vector spaces,grading      70—8
Vector spaces,information retrieval      63—1 to 63—3
Vector spaces,linear independence      2—4
Vector, Maple software      72—1 72—2
Vector, Mathematica software      73—3
Vector-Matrixproducts, Maple software      72—6
VectorNorm, Mathematica software      73—27
VectorQ, Mathematica software      73—4
Vectors      see specific type
Vectors, balanced      33—5
Vectors, control theory      57—2
Vectors, Euclidean point space      66—1
Vectors, fundamentals      1—1 to 1—3 2—3 3—2
Vectors, Gauss elimination      38—7
Vectors, Google’s PageRank      63—11
Vectors, Maple software      72—2 to 72—4
Vectors, Mathematica software      73—3 to 73—5
Vectors, max-plus algebra      25—1
Vectors, multiply, spare matrices      43—10
Vectors, NMR protein structure determination      60—2
Vectors, norms, error analysis      37—2 to 37—3
Vectors, Perron — Frobenius theorem      26—2
Vectors, query      63—2
Vectors, seminorms, error analysis      37—3 to 37—4
Vectors, sign solvability      33—5
Vectors, space over      1—1
Vectors, spaces      1—2
Vectors, vector space method      63—2
Vectors, vector space method, Maple software      72—9
Vedell, Peter      60—13
Vertex coloring      28—9
Vertex independence number      28—9
Vertex-edge incidence matrix      28—7 to 28—8
Vertices, digraphs      29—1
Vertices, Euclidean simplexes      66—7
Vertices, graphs      28—1
Vertices, nonnegative and stochastic matrices      9—2
Vertices, phase 2 geometric interpretation      50—13
Vertices, stars      34—10
Vines      34—15
Volodin, Kimmo Vahkalahti Andrei      53—14
Volterra — Lyapunov stability      19—9
von Neumann, J.      50—24
Vorobyev — Zimmermann covering theorem      25—11
vpa command, Matlab software      71—17 71—19
Walk of length, digraphs      29—2
Walk of length, graphs      28—1
Walk-regular graphs      28—3
Walks, digraphs      29—2
Walks, irreducible classes      54—5
Walks, products      29—4 to 29—5
Walsh-Hadamard gate, quantum computation      62—3
Walsh-Hadamard gate, universal quantum gates      62—7
Walsh-Hadamard transform      62—10
Wang, Jenny      75—1 to 75—23
Wangsness, Amy      35—1 to 35—20
Wanless, Ian M.      31—1 to 31—13
Watkins, David S.      43—1 to 43—11
Watkins, William      32—1 to 32—12
Watson efficiency      52—9 52—10 52—13
Weak combinatorial invariants      27—1 27—5
Weak properties, cyclic of index      54—9
Weak properties, duality      51—6
Weak properties, expanding characteristics      9—8 9—11
Weak properties, Floquet theory      56—15 to 56—16
Weak properties, model      52—8
Weak properties, numerical stability      37—19
Weak properties, sign symmetric      19—3
Weak properties, unitarily invariant      18—6
web crawlers      63—9
Web searches      63—8 to 63—10 see
Wedin theorem      15—7
Wehrfritz, B.A.F.      67—6
Weierstrauss preparation theorem      24—4
Weight characteristic, coding theory      61—2
Weight characteristic, convolutional codes      61—11
Weight characteristic, Fiedler vectors      36—7
Weight characteristic, max-plus algebra      25—2
Weight function, digraphs      29—2
Weight function, Fiedler vectors      36—7
Weight least squares problem      39—1
Weight space      70—7
Weighted bigraph      30—4
Weighted digraphs      29—2
Weighted graphs, algebraic connectivity      36—7 to 36—9
Weighted graphs, Fiedler vectors      36—7
Weiner, Paul      61—1 to 61—13
Well-conditioned data      37—7
Well-conditioned linear systems      37—10
Weyl character formula      70—9
Weyl group, BN structure      67—4
Weyl group, Lie algebra and modules      70—9
Weyl group, semisimple and simple algebras      70—4
Weyl inequalities, eigenvalues      14—4
Weyl inequalities, Hermitian matrices      8—3 8—4
Weyl’s theorem      70—8
Which, Mathematica software      73—8
while loops, Matlab software      71—11
White noise process      64—5
Wide-sense stationarysignals      64—4
Wiegmann studies      7—8
Wielandt-Hoffman theorem      37—21
Wiener deconvolution problem      64—10
Wiener filter      64—10
Wiener filtering      64—10 to 64—11
Wiener prediction problem      64—10
Wiener smoothing problem      64—10
Wiener vertex      34—2
Wiener — Hopf equations, linear prediction      64—7 64—8
Wiener — Hopf equations, Wiener filter      64—11
Wiens, Douglas P.      53—14
Wild problem      24—10
Wilkinson’s shift      42—9
Wilk’s Lambda      53—13
Wilson, Robert      70—1 to 70—10
Winograd, Coppersmith and, studies      47—9
Winograd’s commutative algorithm      47—2
Winograd’s formula      47—5
Wishart distribution      53—8
With, Mathematica software, fundamentals      73—26
With, Mathematica software, singular values      73—18
Within-groups matrix      53—6
Witsenhausen studies      30—9
Witt dimension      69—19
Witt index      67—5 67—6
Witt’s Lemma      67—6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå