Àâòîðèçàöèÿ 
		         
		        
					
 
		          
		        
			         
		          
		        
			        Ïîèñê ïî óêàçàòåëÿì 
		         
		        
			        
					 
				        
					
			         
		          
		        
			         
		          
			
			         
		         
       		 
			         
		          
                
                    
                        
                     
                  
		
			         
		          
		        
			         
		          
		
            
	     
	    
	     
	    
	    
            
		 
                
                    Hogben L. — Handbook of Linear Algebra 
                  
                
                    
                        
                            
                                
                                    Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå      
 Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter 
 
                                 
                                
                                    Íàçâàíèå:   Handbook of Linear Algebra 
Àâòîð:   Hogben L.   
Àííîòàöèÿ:  The Handbook of Linear Algebra provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use handbook format. The esteemed international contributors guide you from the very elementary aspects of the subject to the frontiers of current research. The book features an accessible layout of parts, chapters, and sections, with each section containing definition, fact, and example segments. The five main parts of the book encompass the fundamentals of linear algebra, combinatorial and numerical linear algebra, applications of linear algebra to various mathematical and nonmathematical disciplines, and software packages for linear algebra computations. Within each section, the facts (or theorems) are presented in a list format and include references for each fact to encourage further reading, while the examples illustrate both the definitions and the facts. Linearization often enables difficult problems to be estimated by more manageable linear ones, making the Handbook of Linear Algebra essential reading for professionals who deal with an assortment of mathematical problems.
 
ßçûê:   
Ðóáðèêà:  Ìàòåìàòèêà / 
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ:  Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö  
ed2k:   ed2k stats  
Ãîä èçäàíèÿ:  2006 
Êîëè÷åñòâî ñòðàíèö:  1400 
Äîáàâëåíà â êàòàëîã:  30.06.2008 
Îïåðàöèè:  Ïîëîæèòü íà ïîëêó  |
	 
	Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà  | Ñêîïèðîâàòü ID 
                                 
                             
                        
                     
                 
                                                                
			         
	          
                
                    Ïðåäìåòíûé óêàçàòåëü 
                  
                
                    
                        Generalized Laplacian        36—10 to 36—11    
Generalized least squares estimator        52—8    
Generalized least squares problem        39—1    
Generalized line graphs        28—4    
Generalized Minimal Residual (GMRES), convergence rates        41—15 to 41—16    
Generalized Minimal Residual (GMRES), Krylov space methods        41—7   41—9    
Generalized Minimal Residual (GMRES), linear systems of equations        49—13    
Generalized Minimal Residual (GMRES), matrices function behavior        16—11    
Generalized Minimal Residual (GMRES), preconditioners        41—12    
Generalized octonions        69—4    
Generalized quarternions        69—4    
Generalized Schur complement        52—4    
Generalized sign pattern        33—2    
Generalized Singleton bound        61—12    
Generalized singular value decomposition (GSVD)        15—12    
Generalized stars        34—10 to 34—14    
Generalized variance        52—3    
Generator matrix, convolutional codes        61—11    
Generator matrix, linear block codes        61—3    
Generators, certain integral domains        23—2    
Generators, linear independence and rank        25—12    
Generators, polynomial        61—7    
Geometry and geometric aspects, affine spaces        65—1 to 65—4    
Geometry and geometric aspects, eigenvalues and eigenvectors        4—6    
Geometry and geometric aspects, Euclidean geometry        66—1 to 66—15    
Geometry and geometric aspects, Euclidean spaces        65—4 to 65—6    
Geometry and geometric aspects, fundamentals        65—1    
Geometry and geometric aspects, least squares solutions        39—4 to 39—5    
Geometry and geometric aspects, linear programming        50—13    
Geometry and geometric aspects, matrix power asymptotics        25—8    
Geometry and geometric aspects, max-plus eigenproblem        25—6    
Geometry and geometric aspects, nonnegative and stochastic matrices        9—2    
Geometry and geometric aspects, projective spaces        65—6 to 65—9    
Geometry and geometric aspects, semidefinite programming        51—5    
Geometry’ Rotations’ package, Mathematica software        73—4    
Gerhard, Jurgen        72—21    
Gersgorin discs        14—5 to 14—7    
Gersgorin theorem, generalized cycle products        29—5    
Gersgorin theorem, pseudospectra        16—3    
GGBAK LAPACK subroutine        43—7    
GGBAL LAPACK subroutine        43—7    
GGHRD LAPACK subroutine        43—7    
GIEP (General Inverse Eigenvalue Problem)        34—8    
Gilbert Varshamov bound, linear code classes        61—10    
Gilbert Varshamov bound, main linear coding problem        61—6    
Givens algorithm        46—5 to 46—6    
givens function, Matlab software        42—9    
Givens QR factorization        38—14    
Givens rotations, orthogonalization        38—13 to 38—14    
Givens rotations, QR factorization        39—9    
Givens rotations, tridiagonalization        42—5   42—7    
Givens transformation        38—13    
Glide reflection        65—5    
Global invariant manifolds        56—19    
Glossary        G—1 to G—40    
GMRES (Generalized Minimal Residual), convergence rates        41—15 to 41—16    
GMRES (Generalized Minimal Residual), Krylov space methods        41—7   41—9    
GMRES (Generalized Minimal Residual), linear systems of equations        49—13    
GMRES (Generalized Minimal Residual), matrices function behavior        16—11    
GMRES (Generalized Minimal Residual), preconditioners        41—12    
Golay codes        61—8    
Goldman — Tucker theorem        51—6    
Golub — Kahan singular value decomposition        45—6    
Golub — Reinsch singular value decomposition        45—6    
Gondran — Minoux properties        25—12   25—13    
Google (search engine), information retrieval        63—10 to 63—14    
Google (search engine), Markov chains        54—4 to 54—5    
Google (search engine), PageRank        63—11    
Google (search engine), Web search        63—9    
Goppa code, algebraic geometric        61—10    
grad, Mathematica software        73—15   73—16    
Graded algebras        70—8 to 70—10    
Grading, eigenvalue problems        15—13    
Grading, Krylov subspaces        49—6    
Grading, polar decomposition        15—8    
Grading, singular value problems        15—15    
Grading, tensor algebras        13—20 to 13—22    
Gradual underflow        37—11 to 37—12    
Gragg studies        44—4    
Graham-Pollak theorem        30—9    
Gram matrices, Euclidean geometry        66—5 to 66—7    
Gram matrices, Hermitian matrices        8—1   8—2    
Gram — Schmidt calculation, Maple software        72—6    
Gram — Schmidt methods, Arnoldi factorization        44—3 to 44—4    
Gram — Schmidt methods, unitary similarity        7—2   7—4    
Gram — Schmidt orthogonalization        5—8 to 5—10    
Gram — Scmidt, Mathematica software        73—4    
Gramian, Euclidean simplexes        66—8    
graphical user interfaces (GUIs)        71—19 to 71—22    
Graphics, Matlab software        71—14 to 71—17    
Graphics’ Arrow’, Mathematica software        73—5    
graphs        see «Algebraic connectivity»   «Euclidean   specific    
Graphs, adjacency matrix        28—5 to 28—7    
Graphs, association schemes        28—11 to 28—12    
Graphs, doubly stochastic matrices        27—10    
Graphs, eigenvalues        28—5 to 28—7    
Graphs, fundamentals        28—1 to 28—3    
Graphs, matrix completion problems        35—2    
Graphs, matrix representations        28—7 to 28—9    
Graphs, modeling and analyzing fill        40—11    
Graphs, multiplicative D-stability        19—6    
Graphs, multiplicities and parter vertices        34—2    
Graphs, parameters        28—9 to 28—11    
Graphs, simplexes        66—10    
Graphs, special types        28—3 to 28—5    
Grassmann characteristics, dynamical systems        56—9 to 56—11    
Grassmann characteristics, Floquet theory        56—13    
Grassmann characteristics, manifolds, dynamical systems        56—7    
Grassmann characteristics, matrix pair        15—12    
Grassmann characteristics, tensor algebras        13—21    
Grassmann characteristics, tensors        13—12 to 13—17    
Grassmann, Taksar, Heyman (GTH) trick        54—13    
Gray Code order        31—12    
Greatest common divisor domain (GCDD)        23—2    
Greatest common divisors        23—2    
Greatest integer function        P—3    
Greenbaum, Anne        41—1 to 41—17    
Green’s functions        59—10 to 59—11    
Griesmer bound        61—5    
Grobman — Hartman theorem        56—20    
Group        P—3 to P—4    
Group inverse        9—2    
Group of invertible linear operators        67—1    
Group representations, character table        68—6 to 68—8    
Group representations, characters        68—5 to 68—6    
Group representations, fundamentals        68—1 to 68—3    
Group representations, induction of characters        68—8 to 68—10    
Group representations, matrix representations        68—3 to 68—5    
Group representations, orthogonality relations        68—6 to 68—8    
Group representations, restriction of characters        68—8 to 68—10    
Group representations, symmetric group representations        68—10 to 68—11    
Group ring        68—2    
Grover’s search algorithm        62—15 to 62—17    
GSVD        see «Generalized singular value decomposition (GSVD)»    
GTH (Grassmann, Taksar, Heyman) trick        54—13    
GUI        see «Graphical user interfaces (GUIs)»    
Gunaratne, Ajith        60—13    
H-matrices        19—9    
Hacjan studies        50—23    
Hadamard inequalities, determinantal relations        14—11    
Hadamard inequalities, inequalities        17—11    
Hadamard matrix, nonsquare case        32—5    
Hadamard matrix, permanents        31—8    
Hadamard matrix, square case        32—2    
Hadamard product, complex sign and ray patterns        33—14    
Hadamard product, positive definite matrices        8—9    
Hadamard product, rank and nullity        14—14    
Hadamard product, square matrices        27—4    
Hadamard product, totally positive and negative matrices        21—10   21—11    
Hadamard — Fischer inequality        8—10    
Hadamard’s determinantal inequality        8—10   8—11    
Haemers, Willem H.        28—1 to 28—12    
Half-line subset        13—24    
Halfspaces        25—11    
Hall matrices        27—3   27—4    
Hall, Frank J.        33—1 to 33—17    
Hamilton cycle        28—1    
Hamilton-Jacobi partial differential equations        25—6    
Hamiltonian operator        59—2    
Hamiltonian system        56—13    
Hamiltonian, minimally chordal symmetric        35—15    
Hamming association scheme        28—12    
Hamming properties, code        61—6   61—9    
Hamming properties, distance        61—2    
Hamming properties, weight        61—2    
Han, Lixing        5—1 to 5—16    
Hankel matrices, Maple software        72—18    
Hankel matrices, structured matrices        48—2   48—3    
Hankel matrices, totally positive and negative matrices        21—12    
HankelMatrix, Mathematica software        73—6    
Hansen, Per Christian        39—1 to 39—12    
Hard constraints        51—1    
Hardware floats, Maple software        72—14    
Hardy space        57—5    
Hardy, Littlewood, Polya theorem        27—11    
Hare, Dave        72—21    
Hartman-Grobman theorem        56—20    
Hat matrix        52—9    
Hautus-Popov test        57—8    
Heat equation        59—11    
Heat kernel        59—11    
Height characteristic        9—7   26—8    
Hentzel, Irvin        69—25    
Hereditary        35—2    
Hermite normal form        23—5 to 23—7   23—6    
Hermitian characteristics, angular momentum and Hermitian characteristics, representations        59—9    
Hermitian characteristics, Arnoldi factorization        44—3    
Hermitian characteristics, classical groups        67—5    
Hermitian characteristics, differential equations        55—11    
Hermitian characteristics, differential-algebraic equations        55—15    
Hermitian characteristics, extensions        16—13    
Hermitian characteristics, iterative solution methods        41—4 to 41—7    
Hermitian characteristics, Jordan algebras        69—13    
Hermitian characteristics, products        10—9    
Hermitian characteristics, Schrodinger’s equation        59—7   59—8    
Hermitian characteristics, Schur complements        10—7    
Hermitian characteristics, splitting theorems and stability        26—14    
Hermitian forms        12—7 to 12—9    
Hermitian matrices, adjoint        1—4    
Hermitian matrices, adjoint operators        5—6    
Hermitian matrices, Arnoldi process        49—10    
Hermitian matrices, bilinear forms        12—7 to 12—9    
Hermitian matrices, eigenvalues        8—3 to 8—5   15—5    
Hermitian matrices, fundamentals        1—4   8—1    
Hermitian matrices, inertia        19—2    
Hermitian matrices, multiplicities and Parter vertices        34—2    
Hermitian matrices, numerical range        18—6    
Hermitian matrices, order properties, eigenvalues        8—3 to 8—5    
Hermitian matrices, positive definite and semidefinite matrices        35—8    
Hermitian matrices, positive definite characteristics        5—2    
Hermitian matrices, pseudo-inverse        5—12    
Hermitian matrices, relative perturbation theory        15—14    
Hermitian matrices, singular value decomposition        5—11    
Hermitian matrices, singular values        17—2   17—13    
Hermitian matrices, sparse matrices        49—4 to 49—5    
Hermitian matrices, spectral theory        7—5   7—8    
Hermitian matrices, standard linear preserver problems        22—5    
Hermitian matrices, submatrices and block matrices        10—2    
Hermitian matrices, symmetric factorizations        38—15    
Hermitian positive definite and semidefinite, ARPACK        76—7 to 76—8    
Hermitian preconditioning        41—3    
Hermitian properties, linear operators        5—5    
Hermitian properties, pencils        24—6    
Hermitian properties, property L        24—6    
HermitianTranspose, Maple software        72—3   72—5    
Hershkowitz, Daniel        19—1 to 19—10    
hes, Mathematica software        73—16    
Hessenberg pattern        33—3   33—4    
HessenbergDecomposition, Mathematica software       73—19   73—27    
Hessian properties, Hermitian matrices       8—2    
Hessian properties, semidefinite programming        51—10    
Hestenes studies        46—2    
Hidden constraint        51—10    
High relative accuracy bidiagonal singular value decomposition        45—7   45—8    
High relative accuracy, eigenvalues and singular values, accuracy        46—2 to 46—5   46—7    
High relative accuracy, eigenvalues and singular values, fundamentals        46—1 to 46—2    
High relative accuracy, eigenvalues and singular values, one-sided Jacobi SVD algorithm        46—2 to 46—5    
High relative accuracy, eigenvalues and singular values, positive definite matrices       46—10 to 46—14    
High relative accuracy, eigenvalues and singular values, preconditioned Jacobi SVD algorithm        46—5 to 46—7    
High relative accuracy, eigenvalues and singular values, rank revealing decomposition        46—7 to 46—10    
High relative accuracy, eigenvalues and singular values, structured matrices       46—7 to 46—10    
High relative accuracy, eigenvalues and singular values, symmetric indefinite matrices        46—14 to 46—16    
Higham and Tisseur studies        16—12    
Higham, Nicholas J.        11—1 to 11—12    
Highest weight vector        70—7    
hilb command, Matlab software        71—18    
Hilbert matrix, linear systems conditioning       37—11    
Hilbert matrix, preconditioned Jacobi SVD algorithm       46—7    
Hilbert matrix, rank revealing decomposition       46—10    
Hilbert spaces, quantum computation       62—2    
Hilbert spaces, random signals       64—4    
Hilbert spaces, Schrodinger’s equation       59—7    
Hilbert-Schmidt inner product       13—23   13—24    
HilbertMatrix, Mathematica software, matrices       73—6    
HilbertMatrix, Mathematica software, singular values        73—18    
Hill’s equation        56—14    
Hirsch and Bendixson inequalities       14—2    
HITS (Hypertext Induced Topic Search)       63—9    
HKM method       51—8    
Hodge star operator       13—24 to 13—26    
Hoffman polynomial       28—5   28—6    
Hoffman-Wielandt inequality       7—7    
Hoffman-Wielandt theorem       15—2    
Hogben, Leslie        6—1 to 6—14   35—1    
Holder inequality       37—3    
Holder norm       37—2    
Holmes, Randall R.        68—1 to 68—11    
Homogeneity, cone programming       51—2    
Homogeneity, coordinates       65—7    
Homogeneity, differential equation       2—3   2—4    
Homogeneity, Euclidean simplexes       66—8    
Homogeneity, function field, linear code classes        61—10    
Homogeneity, line coordinates       65—7    
Homogeneity, linear differential equations       55—2    
Homogeneity, Markov chains       54—1    
Homogeneity, partial inverse M-matrices        35—14    
Homogeneity, pencil strict equivalence       23—9    
Homogeneity, polynomials       23—2   23—9    
Homogeneity, projective spaces       65—7    
Homogeneity, systems of linear equations       1—9   1—10    
Homogeneity, tensor algebras       13—21    
Homogeneity, vector norms       37—2    
Homogeneity, vector seminorms       37—3    
Homogeneous ofdegree       13—21    
Homomorphism, bimodules       69—6    
Homomorphism, modules       70—7    
Homomorphism, nonassociative algebra       69—3    
Homotopy approach       20—12    
Hopfalgebra       69—18    
Horn inequalities       14—9    
Hotelling studies       32—1    
Hotelling’s distribution       53—9   53—10    
Householder method, algorithm efficiency       37—17    
Householder method, singular value decomposition       45—5    
Householder properties, algorithm       46—5 to 46—6    
Householder properties, QR factorization       38—13    
Householder properties, reduction, bidiagonal form       45—5    
Householder properties, transformation       38—13    
Householder properties, vectors       38—13    
Householder reflections, orthogonalization       38—13   38—15    
                            
                     
                  
			 
		          
			Ðåêëàìà