Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Hogben L. — Handbook of Linear Algebra
Hogben L. — Handbook of Linear Algebra



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Handbook of Linear Algebra

Àâòîð: Hogben L.

Àííîòàöèÿ:

The Handbook of Linear Algebra provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use handbook format. The esteemed international contributors guide you from the very elementary aspects of the subject to the frontiers of current research. The book features an accessible layout of parts, chapters, and sections, with each section containing definition, fact, and example segments. The five main parts of the book encompass the fundamentals of linear algebra, combinatorial and numerical linear algebra, applications of linear algebra to various mathematical and nonmathematical disciplines, and software packages for linear algebra computations. Within each section, the facts (or theorems) are presented in a list format and include references for each fact to encourage further reading, while the examples illustrate both the definitions and the facts. Linearization often enables difficult problems to be estimated by more manageable linear ones, making the Handbook of Linear Algebra essential reading for professionals who deal with an assortment of mathematical problems.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2006

Êîëè÷åñòâî ñòðàíèö: 1400

Äîáàâëåíà â êàòàëîã: 30.06.2008

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Generalized Laplacian      36—10 to 36—11
Generalized least squares estimator      52—8
Generalized least squares problem      39—1
Generalized line graphs      28—4
Generalized Minimal Residual (GMRES), convergence rates      41—15 to 41—16
Generalized Minimal Residual (GMRES), Krylov space methods      41—7 41—9
Generalized Minimal Residual (GMRES), linear systems of equations      49—13
Generalized Minimal Residual (GMRES), matrices function behavior      16—11
Generalized Minimal Residual (GMRES), preconditioners      41—12
Generalized octonions      69—4
Generalized quarternions      69—4
Generalized Schur complement      52—4
Generalized sign pattern      33—2
Generalized Singleton bound      61—12
Generalized singular value decomposition (GSVD)      15—12
Generalized stars      34—10 to 34—14
Generalized variance      52—3
Generator matrix, convolutional codes      61—11
Generator matrix, linear block codes      61—3
Generators, certain integral domains      23—2
Generators, linear independence and rank      25—12
Generators, polynomial      61—7
Geometry and geometric aspects, affine spaces      65—1 to 65—4
Geometry and geometric aspects, eigenvalues and eigenvectors      4—6
Geometry and geometric aspects, Euclidean geometry      66—1 to 66—15
Geometry and geometric aspects, Euclidean spaces      65—4 to 65—6
Geometry and geometric aspects, fundamentals      65—1
Geometry and geometric aspects, least squares solutions      39—4 to 39—5
Geometry and geometric aspects, linear programming      50—13
Geometry and geometric aspects, matrix power asymptotics      25—8
Geometry and geometric aspects, max-plus eigenproblem      25—6
Geometry and geometric aspects, nonnegative and stochastic matrices      9—2
Geometry and geometric aspects, projective spaces      65—6 to 65—9
Geometry and geometric aspects, semidefinite programming      51—5
Geometry’ Rotations’ package, Mathematica software      73—4
Gerhard, Jurgen      72—21
Gersgorin discs      14—5 to 14—7
Gersgorin theorem, generalized cycle products      29—5
Gersgorin theorem, pseudospectra      16—3
GGBAK LAPACK subroutine      43—7
GGBAL LAPACK subroutine      43—7
GGHRD LAPACK subroutine      43—7
GIEP (General Inverse Eigenvalue Problem)      34—8
Gilbert Varshamov bound, linear code classes      61—10
Gilbert Varshamov bound, main linear coding problem      61—6
Givens algorithm      46—5 to 46—6
givens function, Matlab software      42—9
Givens QR factorization      38—14
Givens rotations, orthogonalization      38—13 to 38—14
Givens rotations, QR factorization      39—9
Givens rotations, tridiagonalization      42—5 42—7
Givens transformation      38—13
Glide reflection      65—5
Global invariant manifolds      56—19
Glossary      G—1 to G—40
GMRES (Generalized Minimal Residual), convergence rates      41—15 to 41—16
GMRES (Generalized Minimal Residual), Krylov space methods      41—7 41—9
GMRES (Generalized Minimal Residual), linear systems of equations      49—13
GMRES (Generalized Minimal Residual), matrices function behavior      16—11
GMRES (Generalized Minimal Residual), preconditioners      41—12
Golay codes      61—8
Goldman — Tucker theorem      51—6
Golub — Kahan singular value decomposition      45—6
Golub — Reinsch singular value decomposition      45—6
Gondran — Minoux properties      25—12 25—13
Google (search engine), information retrieval      63—10 to 63—14
Google (search engine), Markov chains      54—4 to 54—5
Google (search engine), PageRank      63—11
Google (search engine), Web search      63—9
Goppa code, algebraic geometric      61—10
grad, Mathematica software      73—15 73—16
Graded algebras      70—8 to 70—10
Grading, eigenvalue problems      15—13
Grading, Krylov subspaces      49—6
Grading, polar decomposition      15—8
Grading, singular value problems      15—15
Grading, tensor algebras      13—20 to 13—22
Gradual underflow      37—11 to 37—12
Gragg studies      44—4
Graham-Pollak theorem      30—9
Gram matrices, Euclidean geometry      66—5 to 66—7
Gram matrices, Hermitian matrices      8—1 8—2
Gram — Schmidt calculation, Maple software      72—6
Gram — Schmidt methods, Arnoldi factorization      44—3 to 44—4
Gram — Schmidt methods, unitary similarity      7—2 7—4
Gram — Schmidt orthogonalization      5—8 to 5—10
Gram — Scmidt, Mathematica software      73—4
Gramian, Euclidean simplexes      66—8
graphical user interfaces (GUIs)      71—19 to 71—22
Graphics, Matlab software      71—14 to 71—17
Graphics’ Arrow’, Mathematica software      73—5
graphs      see «Algebraic connectivity» «Euclidean specific
Graphs, adjacency matrix      28—5 to 28—7
Graphs, association schemes      28—11 to 28—12
Graphs, doubly stochastic matrices      27—10
Graphs, eigenvalues      28—5 to 28—7
Graphs, fundamentals      28—1 to 28—3
Graphs, matrix completion problems      35—2
Graphs, matrix representations      28—7 to 28—9
Graphs, modeling and analyzing fill      40—11
Graphs, multiplicative D-stability      19—6
Graphs, multiplicities and parter vertices      34—2
Graphs, parameters      28—9 to 28—11
Graphs, simplexes      66—10
Graphs, special types      28—3 to 28—5
Grassmann characteristics, dynamical systems      56—9 to 56—11
Grassmann characteristics, Floquet theory      56—13
Grassmann characteristics, manifolds, dynamical systems      56—7
Grassmann characteristics, matrix pair      15—12
Grassmann characteristics, tensor algebras      13—21
Grassmann characteristics, tensors      13—12 to 13—17
Grassmann, Taksar, Heyman (GTH) trick      54—13
Gray Code order      31—12
Greatest common divisor domain (GCDD)      23—2
Greatest common divisors      23—2
Greatest integer function      P—3
Greenbaum, Anne      41—1 to 41—17
Green’s functions      59—10 to 59—11
Griesmer bound      61—5
Grobman — Hartman theorem      56—20
Group      P—3 to P—4
Group inverse      9—2
Group of invertible linear operators      67—1
Group representations, character table      68—6 to 68—8
Group representations, characters      68—5 to 68—6
Group representations, fundamentals      68—1 to 68—3
Group representations, induction of characters      68—8 to 68—10
Group representations, matrix representations      68—3 to 68—5
Group representations, orthogonality relations      68—6 to 68—8
Group representations, restriction of characters      68—8 to 68—10
Group representations, symmetric group representations      68—10 to 68—11
Group ring      68—2
Grover’s search algorithm      62—15 to 62—17
GSVD      see «Generalized singular value decomposition (GSVD)»
GTH (Grassmann, Taksar, Heyman) trick      54—13
GUI      see «Graphical user interfaces (GUIs)»
Gunaratne, Ajith      60—13
H-matrices      19—9
Hacjan studies      50—23
Hadamard inequalities, determinantal relations      14—11
Hadamard inequalities, inequalities      17—11
Hadamard matrix, nonsquare case      32—5
Hadamard matrix, permanents      31—8
Hadamard matrix, square case      32—2
Hadamard product, complex sign and ray patterns      33—14
Hadamard product, positive definite matrices      8—9
Hadamard product, rank and nullity      14—14
Hadamard product, square matrices      27—4
Hadamard product, totally positive and negative matrices      21—10 21—11
Hadamard — Fischer inequality      8—10
Hadamard’s determinantal inequality      8—10 8—11
Haemers, Willem H.      28—1 to 28—12
Half-line subset      13—24
Halfspaces      25—11
Hall matrices      27—3 27—4
Hall, Frank J.      33—1 to 33—17
Hamilton cycle      28—1
Hamilton-Jacobi partial differential equations      25—6
Hamiltonian operator      59—2
Hamiltonian system      56—13
Hamiltonian, minimally chordal symmetric      35—15
Hamming association scheme      28—12
Hamming properties, code      61—6 61—9
Hamming properties, distance      61—2
Hamming properties, weight      61—2
Han, Lixing      5—1 to 5—16
Hankel matrices, Maple software      72—18
Hankel matrices, structured matrices      48—2 48—3
Hankel matrices, totally positive and negative matrices      21—12
HankelMatrix, Mathematica software      73—6
Hansen, Per Christian      39—1 to 39—12
Hard constraints      51—1
Hardware floats, Maple software      72—14
Hardy space      57—5
Hardy, Littlewood, Polya theorem      27—11
Hare, Dave      72—21
Hartman-Grobman theorem      56—20
Hat matrix      52—9
Hautus-Popov test      57—8
Heat equation      59—11
Heat kernel      59—11
Height characteristic      9—7 26—8
Hentzel, Irvin      69—25
Hereditary      35—2
Hermite normal form      23—5 to 23—7 23—6
Hermitian characteristics, angular momentum and Hermitian characteristics, representations      59—9
Hermitian characteristics, Arnoldi factorization      44—3
Hermitian characteristics, classical groups      67—5
Hermitian characteristics, differential equations      55—11
Hermitian characteristics, differential-algebraic equations      55—15
Hermitian characteristics, extensions      16—13
Hermitian characteristics, iterative solution methods      41—4 to 41—7
Hermitian characteristics, Jordan algebras      69—13
Hermitian characteristics, products      10—9
Hermitian characteristics, Schrodinger’s equation      59—7 59—8
Hermitian characteristics, Schur complements      10—7
Hermitian characteristics, splitting theorems and stability      26—14
Hermitian forms      12—7 to 12—9
Hermitian matrices, adjoint      1—4
Hermitian matrices, adjoint operators      5—6
Hermitian matrices, Arnoldi process      49—10
Hermitian matrices, bilinear forms      12—7 to 12—9
Hermitian matrices, eigenvalues      8—3 to 8—5 15—5
Hermitian matrices, fundamentals      1—4 8—1
Hermitian matrices, inertia      19—2
Hermitian matrices, multiplicities and Parter vertices      34—2
Hermitian matrices, numerical range      18—6
Hermitian matrices, order properties, eigenvalues      8—3 to 8—5
Hermitian matrices, positive definite and semidefinite matrices      35—8
Hermitian matrices, positive definite characteristics      5—2
Hermitian matrices, pseudo-inverse      5—12
Hermitian matrices, relative perturbation theory      15—14
Hermitian matrices, singular value decomposition      5—11
Hermitian matrices, singular values      17—2 17—13
Hermitian matrices, sparse matrices      49—4 to 49—5
Hermitian matrices, spectral theory      7—5 7—8
Hermitian matrices, standard linear preserver problems      22—5
Hermitian matrices, submatrices and block matrices      10—2
Hermitian matrices, symmetric factorizations      38—15
Hermitian positive definite and semidefinite, ARPACK      76—7 to 76—8
Hermitian preconditioning      41—3
Hermitian properties, linear operators      5—5
Hermitian properties, pencils      24—6
Hermitian properties, property L      24—6
HermitianTranspose, Maple software      72—3 72—5
Hershkowitz, Daniel      19—1 to 19—10
hes, Mathematica software      73—16
Hessenberg pattern      33—3 33—4
HessenbergDecomposition, Mathematica software      73—19 73—27
Hessian properties, Hermitian matrices      8—2
Hessian properties, semidefinite programming      51—10
Hestenes studies      46—2
Hidden constraint      51—10
High relative accuracy bidiagonal singular value decomposition      45—7 45—8
High relative accuracy, eigenvalues and singular values, accuracy      46—2 to 46—5 46—7
High relative accuracy, eigenvalues and singular values, fundamentals      46—1 to 46—2
High relative accuracy, eigenvalues and singular values, one-sided Jacobi SVD algorithm      46—2 to 46—5
High relative accuracy, eigenvalues and singular values, positive definite matrices      46—10 to 46—14
High relative accuracy, eigenvalues and singular values, preconditioned Jacobi SVD algorithm      46—5 to 46—7
High relative accuracy, eigenvalues and singular values, rank revealing decomposition      46—7 to 46—10
High relative accuracy, eigenvalues and singular values, structured matrices      46—7 to 46—10
High relative accuracy, eigenvalues and singular values, symmetric indefinite matrices      46—14 to 46—16
Higham and Tisseur studies      16—12
Higham, Nicholas J.      11—1 to 11—12
Highest weight vector      70—7
hilb command, Matlab software      71—18
Hilbert matrix, linear systems conditioning      37—11
Hilbert matrix, preconditioned Jacobi SVD algorithm      46—7
Hilbert matrix, rank revealing decomposition      46—10
Hilbert spaces, quantum computation      62—2
Hilbert spaces, random signals      64—4
Hilbert spaces, Schrodinger’s equation      59—7
Hilbert-Schmidt inner product      13—23 13—24
HilbertMatrix, Mathematica software, matrices      73—6
HilbertMatrix, Mathematica software, singular values      73—18
Hill’s equation      56—14
Hirsch and Bendixson inequalities      14—2
HITS (Hypertext Induced Topic Search)      63—9
HKM method      51—8
Hodge star operator      13—24 to 13—26
Hoffman polynomial      28—5 28—6
Hoffman-Wielandt inequality      7—7
Hoffman-Wielandt theorem      15—2
Hogben, Leslie      6—1 to 6—14 35—1
Holder inequality      37—3
Holder norm      37—2
Holmes, Randall R.      68—1 to 68—11
Homogeneity, cone programming      51—2
Homogeneity, coordinates      65—7
Homogeneity, differential equation      2—3 2—4
Homogeneity, Euclidean simplexes      66—8
Homogeneity, function field, linear code classes      61—10
Homogeneity, line coordinates      65—7
Homogeneity, linear differential equations      55—2
Homogeneity, Markov chains      54—1
Homogeneity, partial inverse M-matrices      35—14
Homogeneity, pencil strict equivalence      23—9
Homogeneity, polynomials      23—2 23—9
Homogeneity, projective spaces      65—7
Homogeneity, systems of linear equations      1—9 1—10
Homogeneity, tensor algebras      13—21
Homogeneity, vector norms      37—2
Homogeneity, vector seminorms      37—3
Homogeneous ofdegree      13—21
Homomorphism, bimodules      69—6
Homomorphism, modules      70—7
Homomorphism, nonassociative algebra      69—3
Homotopy approach      20—12
Hopfalgebra      69—18
Horn inequalities      14—9
Hotelling studies      32—1
Hotelling’s distribution      53—9 53—10
Householder method, algorithm efficiency      37—17
Householder method, singular value decomposition      45—5
Householder properties, algorithm      46—5 to 46—6
Householder properties, QR factorization      38—13
Householder properties, reduction, bidiagonal form      45—5
Householder properties, transformation      38—13
Householder properties, vectors      38—13
Householder reflections, orthogonalization      38—13 38—15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå