Àâòîðèçàöèÿ 
		         
		        
					
 
		          
		        
			         
		          
		        
			        Ïîèñê ïî óêàçàòåëÿì 
		         
		        
			        
					 
				        
					
			         
		          
		        
			         
		          
			
			         
		         
       		 
			         
		          
                
                    
                        
                     
                  
		
			         
		          
		        
			         
		          
		
            
	     
	    
	     
	    
	    
            
		 
                
                    Hogben L. — Handbook of Linear Algebra 
                  
                
                    
                        
                            
                                
                                    Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå      
 Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter 
 
                                 
                                
                                    Íàçâàíèå:   Handbook of Linear Algebra 
Àâòîð:   Hogben L.   
Àííîòàöèÿ:  The Handbook of Linear Algebra provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use handbook format. The esteemed international contributors guide you from the very elementary aspects of the subject to the frontiers of current research. The book features an accessible layout of parts, chapters, and sections, with each section containing definition, fact, and example segments. The five main parts of the book encompass the fundamentals of linear algebra, combinatorial and numerical linear algebra, applications of linear algebra to various mathematical and nonmathematical disciplines, and software packages for linear algebra computations. Within each section, the facts (or theorems) are presented in a list format and include references for each fact to encourage further reading, while the examples illustrate both the definitions and the facts. Linearization often enables difficult problems to be estimated by more manageable linear ones, making the Handbook of Linear Algebra essential reading for professionals who deal with an assortment of mathematical problems.
 
ßçûê:   
Ðóáðèêà:  Ìàòåìàòèêà / 
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ:  Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö  
ed2k:   ed2k stats  
Ãîä èçäàíèÿ:  2006 
Êîëè÷åñòâî ñòðàíèö:  1400 
Äîáàâëåíà â êàòàëîã:  30.06.2008 
Îïåðàöèè:  Ïîëîæèòü íà ïîëêó  |
	 
	Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà  | Ñêîïèðîâàòü ID 
                                 
                             
                        
                     
                 
                                                                
			         
	          
                
                    Ïðåäìåòíûé óêàçàòåëü 
                  
                
                    
                        Balanced Boolean function, Deutsch-Jozsa problem        62—9    
Balanced Boolean function, Deutsch’s problem        62—8    
Balanced column signing        33—5    
Balanced matrices, D-optimal matrices        32—12    
Balanced matrices, nonsquare case        32—5    
Balanced row signing        33—5    
Balanced vectors        33—5    
Banded matrices        41—2    
Banding, Toeplitz matrices        16—6    
Bandlimited random signals        64—5    
Bapat, Ravindra        25—1 to 25—14    
Barely L-matrices        33—5    
Barioli, Francesco        3—1 to 3—9    
Barker and Schneider studies        26—3    
Barrett, Wayne        8—1 to 8—12    
Barvinok rank        25—13    
Barycentric coordinates        66—8    
Bases, Bezout domains        23—8    
Bases, complex sign and ray patterns        33—14    
Bases, component, linear skew product flows        56—11    
Bases, coordinates        2—10 to 2—12    
Bases, induced, symmetric and Grassmann tensors        13—15    
Bases, LTI systems        57—7    
Bases, orthogonality        5—3    
Bases, semisimple and simple algebras        70—4    
Bases, similarity        3—4    
Bases, vector spaces        2—3 to 2—4    
Basic class of P        9—7    
Basic variable        1—10    
Bauer-Fike theorem, eigenvalue problems        15—2    
Bauer-Fike theorem, pseudospectra        16—2 to 16—3    
BCG/BiCG (biconjugate gradient) algorithm, Krylov space methods        41—7   41—10    
BCG/BiCG (biconjugate gradient) algorithm, linear systems of equations        49—13    
BCG/BiCG (biconjugate gradient) algorithm, preconditioners        41—12    
BCH (Bose-Chadhuri-Hocquenghem) code        61—8   61—9    
Beattie, Christopher        38—1 to 38—17    
Belitskii reduction        24—10    
Benner, Peter        57—1 to 57—17    
Bernoulli random variables        52—2    
Bernstein-Vazirani problem        62—11 to 62—13    
Bessel’s inequality        5—4    
Best approximation theorem        5—7    
Best linear approximation        50—20    
Best linear unbiased estimate (BLUE)        39—2    
Best linear unbiased estimator        52—9    
Best PSD approximation        17—13    
Best rank k approximation        17—12 to 17—13    
Best unitary approximation        17—13    
Between-groups matrix        53—6    
Bezout domains, certain integral domains        23—2    
Bezout domains, matrices over integral domains        23—8 to 23—9    
Bezout domains, matrix equivalence        23—6    
Bhatia studies        17—13    
Biacyclic matrices        46—8    
Biadjacency matrix        30—1    
Biclique cover        30—8    
Biclique cover number        30—8    
Biclique partition        30—8    
Biclique partition number        30—8    
Biclique, bipartite graphs        30—8    
Biconjugate gradient (BCG/BiCG) algorithm, Krylov space methods        41—7   41—10    
Biconjugate gradient (BCG/BiCG) algorithm, linear systems of equations        49—13    
Biconjugate gradient (BCG/BiCG) algorithm, preconditioners        41—12    
Bideterminants        25—13    
Bidiagonal singular values by bisection        45—9    
Bidual space        3—8    
Bigraphs        40—10   40—11   see    
Bilinear forms, alternating forms        12—5 to 12—6    
Bilinear forms, fundamentals        12—1 to 12—3    
Bilinear forms, Jordan algebras        69—13    
Bilinear forms, symmetric form        12—1 to 12—5    
Bilinear maps        13—1    
Bilinear noncommutative algorithms        47—2    
Bimodule algebras        69—6    
Binary even weight codes        61—4    
Binary Golay code        61—8   61—9    
Binary linear block code (BLBC)        61—3    
Binary matrices, permanents        31—5 to 31—7    
Binary symmetric channel        61—3 to 61—4    
Binary trees        34—15    
Binet-Cauchy identity        25—13    
Binet-Cauchy theorem        31—2    
Bini, Dario A.        47—1 to 47—10    
Binomial distribution        52—4    
Binomial, Mathematica software        73—26    
Biological sciences applications        60—1 to 60—13    
Biomolecular modeling, flux balancing equation        60—10 to 60—13    
Biomolecular modeling, fundamentals        60—1   60—13    
Biomolecular modeling, Karle-Hauptman matrix        60—7 to 60—9    
Biomolecular modeling, mapping        60—2 to 60—4    
Biomolecular modeling, metabolic network simulation        60—10 to 60—13    
Biomolecular modeling, NMR protein structure determination        60—2 to 60—4    
Biomolecular modeling, protein motion modes        60—9 to 60—10    
Biomolecular modeling, protein structure comparison        60—4 to 60—7    
Biomolecular modeling, x-ray crystallography        60—7 to 60—9    
Biorthogonal pair of bases        66—5    
Biorthogonalization singular value decomposition        45—11    
Bipartite graphs, factorizations        30—8 to 30—10    
Bipartite graphs, fill-graph        30—4    
Bipartite graphs, fundamentals        30—1 to 30—3    
Bipartite graphs, graphs        28—2    
Bipartite graphs, matrices        30—4 to 30—7    
Bipartite graphs, modeling and analyzing fill        40—10    
Bipartite graphs, rank revealing decomposition        46—8    
Bipartite sign pattern matrices        33—9    
Birepresentations        69—6    
Birkhoff’s theorem        27—11    
Bisection method        42—14 to 42—15    
Bit flipping algorithm        61—11    
Bit quantum gate        62—2    
Black-box        66—13    
Black-box matrix        66—13 to 66—15    
Bland’s rule        50—12   50—13    
BLAS subroutine package, fundamentals        74—1 to 74—7    
BLAS subroutine package, method comparison        42—21    
BLBC (binary linear block code)        61—3    
Block code of length        61—1    
Block diagonal matrices        10—4 to 10—6    
Block lower triangular matrices        10—4    
Block matrices, partitioned matrices        10—1 to 10—3    
Block matrices, structured matrices        48—3    
Block positive semidefinite matrices        17—9    
Block triangular matrices, inequalities        17—9    
Block triangular matrices, partitioned matrices        10—4 to 10—6    
Block upper triangular matrices        10—4    
Block, graphs and digraphs        35—2    
Block-clique        35—2    
Block-Toeplitz matrices        48—3    
Block-Toeplitz-Toeplitz-Block (BTTB) matrices        48—3    
BlockMatrix, Mathematica software        73—13    
Blocks, square case        32—2    
Bloomfield-Watson efficiency        52—9   52—10   52—13    
Bloomfield-Watson Trace Inequality        52—10   52—13    
Bloomfield-Watson-Knott Inequality        52—10   52—13    
BLUE (best linear unbiased estimate)        39—2    
BN structure, matrix groups        67—4 to 67—5    
Bochner’s theorem        8—10   8—11   8—12    
Boolean properties, algebra        30—8    
Boolean properties, bipartite graphs        30—8   30—9    
Boolean properties, Deutsch-Jozsa problem        62—9    
Boolean properties, Deutsch’s problem        62—8    
Boolean properties, fast matrix multiplication        47—10    
Boolean properties, matrices        30—8   47—10    
Boolean properties, rank        30—8   30—9    
Borel subgroup        67—4   67—5    
Borobia, Alberto        20—1 to 20—12    
Bose-Chadhuri-Hocquenghem (BCH) code        61—8    
Bose-Mesner algebra        28—11    
Bosons        59—10    
Bottleneck matrices        36—4    
Boundaries, fundamentals        P—1    
Boundaries, interior point methods        50—23    
Boundaries, numerical range        18—3 to 18—4    
Bounded properties        9—11    
Box, Euclidean spaces        66—10    
Branches, matrix similarities        24—1    
Branches, multiplicities and parter vertices        34—2    
Brauer theorem        14—6    
Bregman’s bound        31—7    
Bremmer, Murray R.        69—1 to 69—25    
Brent, R.        47—5    
Brin, Sergey        54—4   63—9   63—10    
Browne’s theorem        14—2    
Brualdi, Richard A.        27—1 to 27—12    
BTTB (Block-Toeplitz-Toeplitz-Block) matrices        48—3    
bucky command, Matlab software        71—11    
Built-in functions, Matlab software        71—4 to 71—5    
Bulge        42—10   43—5    
Bunch-Parlett factorization        46—14    
Burnside’s Vanishing theorem        68—6    
Businger-Golub pivoting, preconditioned Jacobi SVD algorithm        46—5    
Businger-Golub pivoting, rank revealing decompositions        46—9    
Butterfly relations        58—18   58—20    
Byers, Ralph        37—1 to 37—21    
Cameron, Peter J.        67—1 to 67—7    
Canonical angle and canonical angle matrix        15—2    
Canonical angles        17—15    
Canonical correlations and variates, multivariate statistical analysis        53—7    
Canonical correlations and variates, singular values        17—15    
Canonical forms, eigenvectors, generalized        6—2 to 6—3    
Canonical forms, elementary divisors        6—8 to 6—11    
Canonical forms, fundamentals        6—1 to 6—2    
Canonical forms, invariant factors        6—12 to 6—14    
Canonical forms, Jordan canonical form        6—3 to 6—6    
Canonical forms, linear programming        50—7   50—7    
Canonical forms, Maple software        72—15 to 72—16    
Canonical forms, rational canonical forms        6—8 to 6—11   6—12    
Canonical forms, real-Jordan canonical form        6—6 to 6—8    
Canonical forms, Smith normal form        6—11 to 6—12    
Canonical variates        53—6    
Cartan matrix        70—4    
Cartan’s Criterion for Semisimplicity        70—4    
Cartesian coordinates        55—3    
Cartesian decomposition        17—11    
Cartesian product        13—11 to 13—12    
Cassini, ovals of        14—6   14—6    
cat command, Matlab software        71—2    
Cauchy boundary conditions        55—3    
Cauchy integral        11—2    
Cauchy interlace property        42—20    
Cauchy matrices, rank revealing decompositions        46—9    
Cauchy matrices, structured matrices        48—2    
Cauchy matrices, symmetric indefinite matrices        46—16    
Cauchy matrices, totally positive and negative matrices        21—4    
Cauchy-Binet formula, determinants        4—4   4—5    
Cauchy-Binet formula, matrix equivalence        23—6    
Cauchy-Binet Identity        21—2    
Cauchy-Binet inequalities        14—10    
Cauchy-Schwartz inequality, inner product spaces        5—1   5—2    
Cauchy-Schwartz inequality, vector norms        37—3    
Causal part, Wiener filtering        64—10    
Causal signal processing        64—2    
Cayley numbers, nonassociative algebra        69—4    
Cayley numbers, standard forms        22—4    
Cayley-Dickson algebra, alternative algebra        69—11   69—12    
Cayley-Dickson algebra, Jordan algebras        69—16    
Cayley-Dickson algebra, Malcev algebras        69—17    
Cayley-Dickson algebra, nonassociative algebra        69—4    
Cayley-Dickson algebra, power associative algebras        69—15    
Cayley-Dickson doubling process        69—4    
Cayley-Dickson matrix algebra        69—9    
Cayley-Hamilton theorem        4—8    
Cayley’s formula        7—6    
Cayley’s Transform        7—6    
CCS (compressed column storage) scheme        40—3    
Cell bracket, Mathematica software        73—2    
Cells, Mathematica software        73—2    
Censoring, Markov chains        54—11    
Center        69—5    
Center subspaces        56—3    
Centering matrix        52—4    
Central algebra        69—5    
Central controller        57—15    
Central distribution        53—3    
Central force motion        59—4 to 59—5    
Central matrices        33—17    
Central Moufang identity        69—10    
Central path        51—8    
Central vertex        34—10    
Centroid        69—5    
Certain integral domains        23—1 to 23—4    
CG (Conjugate Gradient) algorithm, convergence rates        41—14 to 41—15    
CG (Conjugate Gradient) algorithm, Krylov space methods        41—4   41—6    
CGS (classical Gram-Schmidt) scheme        44—3 to 44—4   see    
CGS (Conjugate Gradient Squared) algorithm        41—8    
Chain exponent        56—16    
Chain recurrence        56—7 to 56—9    
Chain recurrent component        56—7    
Chain recurrent set        56—7    
Chain transitive        56—7    
Change of basis, coordinates        2—10 to 2—12    
Change of basis, LTI systems        57—7    
Change of basis, similarity        3—4    
Change-of-basis matrix        2—10    
Channels, coding theory        61—2    
Character table        68—7    
Characteristic equation        43—2    
Characteristic polynomial function        25—9    
Characteristic polynomial, adjacency matrix        28—5    
Characteristic polynomial, fast matrix multiplication        47—10    
Characteristic polynomial, generalized eigenvalue problem        43—2    
Characteristic polynomials        4—6    
Characteristic vector        30—8    
Characteristic vertex        36—4    
CharacteristicPolynomial, Maple software, eigenvalues and CharacteristicPolynomial, Maple software, eigenvectors        72—11   72—12    
CharacteristicPolynomial, Maple software, matrix stability        72—21    
CharacteristicPolynomial, Maple software, nonlinear algebra        72—14    
CharacteristicPolynomials, Mathematica software        73—14    
Characterizations, singular values        17—1 to 17—3    
Characters, grading        70—9    
Characters, group representations        68—5 to 68—6    
Characters, restriction        68—8 to 68—10    
Characters, table        68—6 to 68—8    
Chebyshev polynomial, convergence rates        41—15    
Chebyshev polynomial, polynomial restarting        44—6    
Chebyshev polynomial, rook polynomials        31—11    
Checkerboard partial order        21—9    
Chemical flux        60—10    
Cholesky algorithm        46—11    
Cholesky decomposition, preconditioners        41—12   41—13    
Cholesky decomposition, symmetric factorizations        38—15   38—16    
Cholesky factor, modeling and analyzing fill        40—13    
Cholesky factor, positive definite matrices        46—12    
Cholesky factor, QR factorization        39—9    
Cholesky factor, reordering effect        40—16   40—18    
Cholesky factorization with pivoting        46—10    
Cholesky factorization, extensions        16—13    
Cholesky factorization, least squares algorithms        39—7    
Cholesky factorization, linear prediction        64—8    
Cholesky factorization, positive definite matrices        8—7   46—13    
Cholesky factorization, sparse matrices        49—3 to 49—5    
Cholesky factorization, sparse matrix factorizations        49—3    
Cholesky factorization, symmetric factorizations        38—15    
Cholesky-like factorization        8—9    
CholeskyDecomposition, Mathematica software        73—18   73—27    
Chop, Mathematica software        73—25    
Chordal bipartite graph, bipartite graphs        30—1    
Chordal distance, eigenvalue problems        15—10    
Chordal graph, bipartite graphs        30—1    
Chordal graphs        35—2    
                            
                     
                  
			 
		          
			Ðåêëàìà