Àâòîðèçàöèÿ 
		         
		        
					
 
		          
		        
			         
		          
		        
			        Ïîèñê ïî óêàçàòåëÿì 
		         
		        
			        
					 
				        
					
			         
		          
		        
			         
		          
			
			         
		         
       		 
			         
		          
                
                    
                        
                     
                  
		
			         
		          
		        
			         
		          
		
            
	     
	    
	     
	    
	    
            
		 
                
                    Hogben L. — Handbook of Linear Algebra 
                  
                
                    
                        
                            
                                
                                    Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå      
 Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter 
 
                                 
                                
                                    Íàçâàíèå:   Handbook of Linear Algebra 
Àâòîð:   Hogben L.   
Àííîòàöèÿ:  The Handbook of Linear Algebra provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use handbook format. The esteemed international contributors guide you from the very elementary aspects of the subject to the frontiers of current research. The book features an accessible layout of parts, chapters, and sections, with each section containing definition, fact, and example segments. The five main parts of the book encompass the fundamentals of linear algebra, combinatorial and numerical linear algebra, applications of linear algebra to various mathematical and nonmathematical disciplines, and software packages for linear algebra computations. Within each section, the facts (or theorems) are presented in a list format and include references for each fact to encourage further reading, while the examples illustrate both the definitions and the facts. Linearization often enables difficult problems to be estimated by more manageable linear ones, making the Handbook of Linear Algebra essential reading for professionals who deal with an assortment of mathematical problems.
 
ßçûê:   
Ðóáðèêà:  Ìàòåìàòèêà / 
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ:  Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö  
ed2k:   ed2k stats  
Ãîä èçäàíèÿ:  2006 
Êîëè÷åñòâî ñòðàíèö:  1400 
Äîáàâëåíà â êàòàëîã:  30.06.2008 
Îïåðàöèè:  Ïîëîæèòü íà ïîëêó  |
	 
	Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà  | Ñêîïèðîâàòü ID 
                                 
                             
                        
                     
                 
                                                                
			         
	          
                
                    Ïðåäìåòíûé óêàçàòåëü 
                  
                
                    
                        Max-cut problem        51—1   51—2   51—10    
Max-plus algebra, asymptotics, matrix powers        25—8 to 25—9    
Max-plus algebra, eigenproblem        25—6 to 25—8    
Max-plus algebra, fundamentals        25—1 to 25—4    
Max-plus algebra, linear independence and rank        25—12 to 25—14    
Max-plus algebra, linear inequalities and projections        25—10 to 25—12    
Max-plus algebra, maximal cycle mean        25—4 to 25—6    
Max-plus algebra, permanent        25—9 to 25—10    
Max-plus algebra, permanents        25—9 to 25—10    
Max-plus Collatz-Wielandt formulas        25—4 to 25—5    
Max-plus Cramer’s formula        25—13    
Max-plus diagonal scaling        25—6    
Max-plus eigenproblem        25—6 to 25—8    
Max-plus permanent        25—9 to 25—10    
Max-plus polynomial function        25—9    
Max-plus semiring        25—1    
Maximal cycle mean        25—4 to 25—6    
Maximal ideal        23—2    
Maximal rank        33—11    
Maximal sign nonsingularity        33—3    
Maximize, Mathematica software        73—23   73—27    
Maximum absolute column sum norm        37—4    
Maximum absolute row sum norm        37—4    
Maximum distance separable (MDS)        61—5    
Maximum distance separable (MDS) convolutional codes        61—12    
Maximum entropy method        64—14   64—15    
Maximum likelihood estimates        53—4    
Maximum multiplicity        34—4 to 34—6    
Maximum rank deficiency        34—4    
Maxplus toolbox        25—6    
Maxwell’s equations        59—2    
McDonald studies        26—7    
McLaurin expansion        23—9    
McMillan degree        57—6    
MDS (maximum distance separable)        61—5    
MDS (maximum distance separable) convolutional codes        61—12    
Mean square prediction error        64—7    
Mean value        52—2    
Mean vectors        52—3    
Mean, multivariate normal inference        53—4    
Mean, statistics and random variables        52—2    
Measure of relative separation        17—7    
Measured outputs        57—14    
Mehrmann, Volker        55—1 to 55—16    
Meini iteration        11—11    
Meini, Beatrice        54—1 to 54—14    
Menage number        31—6    
Menger matrix, Euclidean simplexes        66—8   66—9    
Menger matrix, fundamentals        66—12    
Menger matrix, resistive electrical networks        66—15    
Merging,matrix power asymptotics        25—8    
Merging,nonnegative IEPs        20—8    
mesh command, Matlab software        71—15    
Mesh, Mathematica software        73—27    
meshgrid command, Matlab software        71—14    
Message blocks of length        61—1    
Metabolites        60—10    
Method ofCondensation        4—4    
Metric dynamical systems        56—12    
Metric multidimensional scaling        53—13 to 53—14    
Metric net, simplexes        66—10    
Metrics        P—4    
Meyer, Carl D.        63—1 to 63—14    
MGS (modified Gram-Schmidt) process        44—4    
Midpoint, affine spaces        65—2    
Midpoint, Euclidean point space        66—2    
MIEPs (multiplicative IEPs)        20—10    
Mills, Mark        2—1 to 2—12    
Min-plus semiring        25—1    
Minimal connection        29—12 to 29—13    
Minimal matrix norms        37—4    
Minimal polynomials, convergence in gap        44—9    
Minimal polynomials, eigenvalues and eigenvectors        4—6    
Minimal polynomials, Krylov subspaces        49—6    
Minimal rank        33—11    
Minimal realization        57—6    
Minimal Residual (MINRES) algorithm, convergence rates        41—14 to 41—15    
Minimal Residual (MINRES) algorithm, Krylov space methods        41—4   41—6   41—10    
Minimal sign-central matrices        33—17    
Minimally chordal symmetric Hamiltonian        35—15    
Minimally potentially stable        33—7    
Minimax theorem        50—18    
Minimize, Mathematica software, fundamentals        73—27    
Minimize, Mathematica software, linear programming        73—23   73—24    
Minimum co-cover        27—2    
Minimum cover        27—2    
Minimum deficiency algorithm        40—17    
Minimum entropy controller        57—15    
Minimum phase        64—2    
Minimum rank        34—4 to 34—6    
Minimum rank inertia        33—11 to 33—12    
Minimum-norm least squares solution        39—1    
Minors        see «Principal minors»    
Minors, determinants        4—1    
Minors, graphs        28—4    
Minors, Mathematica software        73—10   73—11    
MINRES (Minimal Residual) algorithm, convergence rates        41—14 to 41—15    
MINRES (Minimal Residual) algorithm, Krylov space methods        41—4   41—6   41—10    
Minus algebra        69—2    
Mirsky theorem        15—6    
Mixed strategies, matrix games        50—18    
Mobius function        20—7    
Model matrix        52—8    
Models        see specific model    
Models, fill, sparse matrix methods        40—10 to 40—13    
Models, full-rank        52—8    
Models, Gauss — Markov model        52—8   53—11    
Models, LAPACK subroutine package        75—8 to 75—9    
Models, linear statistical        52—1 to 52—15    
Models, multivariate linear model        53—11    
Models, multivariate statistical analysis        53—11 to 53—13    
Models, Pade        49—14   49—15    
Models, Pade model        49—14    
Models, reduced-order model        49—14    
Models, signal model        64—16    
Models, univariate linear model        53—11    
Modified Gram-Schmidt (MGS) process        44—4    
Modified incomplete Cholesky decomposition        41—11    
Modular arithmetic        72—12 to 72—13    
Module, Mathematica software        73—26    
Modules, group representations        68—2    
Modules, Lie algebras        70—7 to 70—10    
Modules, matrix representations        68—4    
Molecular distance geometry problem        60—2    
Moment generating function        53—3    
Monic polynomials        23—2    
Monotone class        27—7 to 27—8    
Monotone vector norm        37—2    
Mood studies        32—1    
Moore — Penrose inverse, inverse patterns        33—12   33—13    
Moore — Penrose inverse, least squares solutions        39—2    
Moore — Penrose inverse, linear statistical models        52—12    
Moore — Penrose inverse, Maple software        72—7    
Moore — Penrose pseudo-inverse, extensions        16—13    
Moore — Penrose pseudo-inverse, pseudo-inverse        5—12    
Morgan studies        44—6    
Morse decompositions, dynamical systems        56—7 to 56—9    
Morse decompositions, Grassmannian and flag manifolds        56—9 to 56—10    
Morse decompositions, robust linear systems        56—17    
Morse sets        56—7    
Morse spectrum        56—16    
Most, Mathematica software, fundamentals        73—27    
Most, Mathematica software, matrices manipulation        73—13    
Most, Mathematica software, vectors        73—3    
Motzkin and Taussky studies        7—8    
Moufang identities        69—10    
Moulton Plane        65—9    
Mukhopadhyay, Kriti        60—13    
Multi-bigraph        30—4    
multidimensional arrays        71—1 to 71—3    
Multigrid method        41—3   41—11    
Multilinear algebra, alt multiplication        13—17 to 13—19    
Multilinear algebra, antisymmetric maps        13—10 to 13—12    
Multilinear algebra, associated maps        13—19 to 13—20    
Multilinear algebra, decomposable tensors        13—7    
Multilinear algebra, Grassmann tensors        13—12 to 13—17    
Multilinear algebra, Hodge star operator        13—24 to 13—26    
Multilinear algebra, inner product spaces        13—22 to 13—24    
Multilinear algebra, linear maps        13—8 to 13—10    
Multilinear algebra, multilinear maps        13—1 to 13—3    
Multilinear algebra, orientation        13—24 to 13—26    
Multilinear algebra, sym multiplication        13—17 to 13—19    
Multilinear algebra, symmetric maps        13—10 to 13—12    
Multilinear algebra, symmetric tensors        13—12 to 13—17    
Multilinear algebra, tensor algebras        13—20 to 13—22    
Multilinear algebra, tensor multiplication        13—17 to 13—19    
Multilinear algebra, tensor products        13—3 to 13—7   13—8   13—22    
Multilinear maps        13—1 to 13—3    
Multinomial distribution        52—4    
Multiple linear regression        52—8    
Multiple relativelyrobust representations (MRRR)        42—15 to 42—17    
Multiplication        69—1   see    
Multiplication algebra        69—5    
Multiplicative D-stability        19—5 to 19—7    
Multiplicative ergodic theorem        56—14 to 56—15    
Multiplicative IEPs (MIEPs)        20—10    
Multiplicative perturbation, eigenvalue problems        15—13    
Multiplicative perturbation, polar decomposition        15—8    
Multiplicative perturbation, singular value problems        15—15    
Multiplicative preservers        22—7 to 22—8    
Multiplicity lists        see «Symmetric matrices»    
Multiplicity lists, double generalized stars        34—11 to 34—14    
Multiplicity lists, eigenvalues        34—7 to 34—8    
Multiplicity lists, fundamentals        34—1 to 34—2    
Multiplicity lists, generalized stars        34—10 to 34—11    
Multiplicity lists, maximum multiplicity        34—4 to 34—6    
Multiplicity lists, minimum rank        34—4 to 34—6    
Multiplicity lists, parter vertices        34—2 to 34—4    
Multiplicity lists, stars, generalized        34—10 to 34—14    
Multiplicity lists, trees        34—8 to 34—10    
Multiplicity lists, vines        34—15    
Multiplicity, algebraic connectivity        36—10 to 36—11    
Multiplicity, characters        68—6    
Multiplicity, composition        13—13    
Multiplicity, max-plus permanent        25—9    
Multiplicity, singular value decomposition        45—1    
Multiset        P—4 to P—5    
Multivariate Gauss-Markov theorem        53—12    
Multivariate linear model        53—11    
Multivariate normal distribution, multivariate statistical analysis        53—3 to 53—5    
Multivariate normal distribution, positive definite matrices        8—9    
Multivariate statistical analysis, canonical correlations and variates        53—7    
Multivariate statistical analysis, correlations and variates        53—7 to 53—8    
Multivariate statistical analysis, data matrix        53—2 to 53—3    
Multivariate statistical analysis, discriminant coordinates        53—6    
Multivariate statistical analysis, estimation, correlations and variates        53—7 to 53—8    
Multivariate statistical analysis, fundamentals        53—1 to 53—2    
Multivariate statistical analysis, inference, multivariate normal        53—4 to 53—5    
Multivariate statistical analysis, least squares estimation        53—11 to 53—12    
Multivariate statistical analysis, matrix quadratic forms        53—8 to 53—11    
Multivariate statistical analysis, metric multidimensional scaling        53—13 to 53—14    
Multivariate statistical analysis, models        53—11 to 53—13    
Multivariate statistical analysis, multivariate normal distribution        53—3 to 53—5    
Multivariate statistical analysis, principal component analysis        53—5 to 53—6    
Multivariate statistical analysis, statistical inference        53—12 to 53—13    
Murakami, Lucia I.        69—1 to 69—25    
MUSIC algorithm        64—17    
N-cycle matrices        48—2    
Nagy, Kamm and, studies        48—9    
naming conventions        76—3 to 76—4    
narin command, Matlab software        71—12    
narout command, Matlab software        71—12    
Narrow sense Bose — Chadhuri — Hocquenghem (BCH) code        61—8    
Narrow-band signals        64—16    
Natural norms        37—4    
Natural ordering        41—2    
Near breakdown        49—8    
Nearby floating point numbers        37—13    
Nearest-neighbor decoding        61—2    
Nearly decomposable        27—3    
Nearly reducible matrices        29—12 to 29—13    
Nearly sign non-singularity        33—3    
Nearly sign-central matrices        33—17    
Negative definite properties        12—3   12—8    
Negative half-life        13—24    
Negative orientation        13—24    
Negative semi-definite properties, Hermitian forms        12—8    
Negative semi-definite properties, symmetric bilinear forms        12—3    
Negative semistability        33—7    
Negative stability, sign pattern matrices        33—7    
Negative stability, stability        19—3    
Negative subdivision        20—8    
Negative vertices        36—7    
Neighbors, graphs        28—2    
Nested basis        49—5    
Nested dissection ordering        40—16 to 40—17    
Net trace        20—7    
Neubauer, Michael G.        32—1 to 32—12    
Neumann boundary conditions        59—10    
Neumann series        14—16    
Neumann, Michael        5—1 to 5—16    
Newton iteration        11—11    
Newton-Schultz iteration        11—12    
Newton’s law        59—1    
Newton’s method, interior point methods        50—24    
Newton’s method, numerical methods, PIEPs        20—11    
Newton’s method, primal-dual interior point algorithm        51—8    
Newton’s method, total least squares problem        48—9    
Ng, Esmond G.        40—1 to 40—18    
Ng, Michael        48—1 to 48—9    
Nielsen, Hans Bruun        39—1 to 39—12    
Nil algebra        69—5    
Nil ideal properties        69—5    
Nil radical algebras        69—5    
Nil-semisimple algebras        69—5    
Nilpotence, alternative algebras        69—10    
Nilpotence, general properties        69—5    
Nilpotence, idempotence        2—12    
Nilpotence, invariant subspaces        3—6    
Nilpotence, reducible matrices        9—11 to 9—12    
Nilpotency index        69—5    
Nilpotent radical algebras        69—6    
Nodes, digraphs        29—1    
Noise subspace        64—16    
Noisy channel        61—2    
Noisy transmission        61—2    
Non-Hermitian case        49—12    
Non-Hermitian Lanczos algorithm        41—7    
Non-Hermitian problems        41—7 to 41—11    
Non-optimal Krylov space methods        41—7 to 41—11    
Nonassociative algebra        69—3   see    
Nonassociative algebra, Akivis algebra        69—16 to 69—17    
Nonassociative algebra, alternative algebras        69—10 to 69—12    
Nonassociative algebra, composition algebras        69—8 to 69—10    
Nonassociative algebra, computational methods        69—20 to 69—25    
Nonassociative algebra, fundamentals        69—1 to 69—4    
Nonassociative algebra, Jordan algebras        69—12 to 69—14    
Nonassociative algebra, Malcev algebras        69—16 to 69—17    
Nonassociative algebra, noncommutative Jordan algebras        69—14 to 69—16    
Nonassociative algebra, power associative algebras        69—14 to 69—16    
Nonassociative algebra, properties        69—4 to 69—8    
Nonassociative algebra, right alternative algebras        69—14 to 69—16    
Nonassociative algebra, Sabinin algebra        69—16 to 69—17    
Nonbasic variables        50—10    
Noncentral distribution        53—3    
Noncentral F-distribution        53—3    
Noncollinear points        65—2    
Noncommutative algorithms        47—2    
Noncommutative Jordan algebra        69—14    
Noncommutative Jordan algebras        69—14 to 69—16    
                            
                     
                  
			 
		          
			Ðåêëàìà